359 research outputs found

    Immunodepletion in xenotransplantation

    Get PDF
    Xenograft transplantation is perhaps the most immunologically difficult problem in transplantation today. An overwhelming hyperacute rejection reaction (HAR) occurs within minutes of organ implantation. Preformed antibodies are thought to initiate this process. We used a pig-to-dog renal xenograft transplant model and investigated methods of decreasing the severity of hyperacute rejection. Female pigs weighing 15-20 kg were used as donors. Recipients were mongrel dogs weighing 15-25 kg. Experimental dogs were all given a number of treatments of IgG depletion using an antibody removal system (Dupont-Excorim). This machine immunoadsorbs plasma against a column containing immobilized staphylococcal protein A, which is known to bind the IgG Fc receptor. An 84% reduction in the IgG levels and a 71% reduction in IgM levels was achieved. Postoperative assessment was made of urine output, time to onset of HAR, and histopathological examination of the rejected kidneys. Although cross-matches between donor lymphocytes and recipient sera remained strongly positive in the treated dogs, there was a two- to fourfold reduction in the titers. The time to onset of HAR was prolonged in the experimental group, and the urine output was increased slightly. The histopathologic changes in the experimental group generally showed signs of HAR, but of less intensity than in the nonimmunodepleted control group. © 1990 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Phosphorylated DegU Manipulates Cell Fate Differentiation in the <i>Bacillus subtilis</i> Biofilm<em/>

    Get PDF
    Cell differentiation is ubiquitous and facilitates division of labor and development. Bacteria are capable of multicellular behaviors that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm. During Bacillus subtilis biofilm formation, a subpopulation of cells differentiates into a specialized population that synthesizes the exopolysaccharide and the TasA amyloid components of the extracellular matrix. The differentiation process is indirectly controlled by the transcription factor Spo0A that facilitates transcription of the eps and tapA (tasA) operons. DegU is a transcription factor involved in regulating biofilm formation. Here, using a combination of genetics and live single-cell cytological techniques, we define the mechanism of biofilm inhibition at high levels of phosphorylated DegU (DegU∼P) by showing that transcription from the eps and tapA promoter regions is inhibited. Data demonstrating that this is not a direct regulatory event are presented. We demonstrate that DegU∼P controls the frequency with which cells activate transcription from the operons needed for matrix biosynthesis in favor of an off state. Subsequent experimental analysis led us to conclude that DegU∼P functions to increase the level of Spo0A∼P, driving cell fate differentiation toward the terminal developmental process of sporulation

    The EpsE Flagellar Clutch Is Bifunctional and Synergizes with EPS Biosynthesis to Promote Bacillus subtilis Biofilm Formation

    Get PDF
    Many bacteria inhibit motility concomitant with the synthesis of an extracellular polysaccharide matrix and the formation of biofilm aggregates. In Bacillus subtilis biofilms, motility is inhibited by EpsE, which acts as a clutch on the flagella rotor to inhibit motility, and which is encoded within the 15 gene eps operon required for EPS production. EpsE shows sequence similarity to the glycosyltransferase family of enzymes, and we demonstrate that the conserved active site motif is required for EPS biosynthesis. We also screen for residues specifically required for either clutch or enzymatic activity and demonstrate that the two functions are genetically separable. Finally, we show that, whereas EPS synthesis activity is dominant for biofilm formation, both functions of EpsE synergize to stabilize cell aggregates and relieve selective pressure to abolish motility by genetic mutation. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional enzyme

    The Spatial Architecture of Bacillus subtilis Biofilms Deciphered Using a Surface-Associated Model and In Situ Imaging

    Get PDF
    The formation of multicellular communities known as biofilms is the part of bacterial life cycle in which bacteria display cooperative behaviour and differentiated phenotypes leading to specific functions. Bacillus subtilis is a Gram-positive bacterium that has served for a decade as a model to study the molecular pathways that control biofilm formation. Most of the data on B. subtilis biofilms have come from studies on the formation of pellicles at the air-liquid interface, or on the complex macrocolonies that develop on semi-solid nutritive agar. Here, using confocal laser scanning microcopy, we show that B. subtilis strains of different origins are capable of forming biofilms on immersed surfaces with dramatically protruding “beanstalk-like” structures with certain strains. Indeed, these structures can reach a height of more than 300 µm with one undomesticated strain from a medical environment. Using 14 GFP-labeled mutants previously described as affecting pellicle or complex colony formation, we have identified four genes whose inactivation significantly impeded immersed biofilm development, and one mutation triggering hyperbiofilm formation. We also identified mutations causing the three-dimensional architecture of the biofilm to be altered. Taken together, our results reveal that B. subtilis is able to form specific biofilm features on immersed surfaces, and that the development of these multicellular surface-associated communities involves regulation pathways that are common to those governing the formation of pellicle and/or complex colonies, and also some specific mechanisms. Finally, we propose the submerged surface-associated biofilm as another relevant model for the study of B. subtilis multicellular communities

    Synthesis of Janus compounds for the recognition of G-U mismatched nucleobase pairs

    Get PDF
    The design and synthesis of two Janus-type heterocycles with the capacity to simultaneously recognize guanine and uracyl in G-U mismatched pairs through complementary hydrogen bond pairing is described. Both compounds were conveniently functionalized with a carboxylic function and efficiently attached to a tripeptide sequence by using solid-phase methodologies. Ligands based on the derivatization of such Janus compounds with a small aminoglycoside, neamine, and its guanidinylated analogue have been synthesized, and their interaction with Tau RNA has been investigated by using several biophysical techniques, including UV-monitored melting curves, fluorescence titration experiments, and 1H NMR. The overall results indicated that Janus-neamine/guanidinoneamine showed some preference for the +3 mutated RNA sequence associated with the development of some tauopathies, although preliminary NMR studies have not confirmed binding to G-U pairs. Moreover, a good correlation has been found between the RNA binding affinity of such Janus-containing ligands and their ability to stabilize this secondary structure upon complexation

    Characterization of Parameters Required for Effective Use of Tamoxifen-Regulated Recombination

    Get PDF
    Conditional gene targeting using the Cre-loxp system is a well established technique in numerous in vitro and in vivo systems. Ligand regulated forms of Cre have been increasingly used in these applications in order to gain temporal and spatial control over conditional targeting. The tamoxifen-regulated Cre variant mer-Cre-mer (mCrem) is widely utilized because of its reputation for tight regulation in the absence of its tamoxifen ligand. In the DT40 chicken B cell line, we generated an mCrem-based reversible switch for conditional regulation of a transgene, and in contrast with previous work, observed significant constitutive activity of mCrem. This prompted us to use our system for analysis of the parameters governing tamoxifen-regulated mCrem recombination of a genomic target. We find that robust mCrem expression correlates with a high level of tamoxifen-independent Cre activity, while clones expressing mCrem at the limit of western blot detection exhibit extremely tight regulation. We also observe time and dose-dependent effects on mCrem activity which suggest limitations on the use of conditional targeting approaches for applications which require tight temporal coordination of Cre action within a cell population

    Multicenter evaluation of the vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of gram-positive aerobic bacteria

    Get PDF
    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting
    corecore