32 research outputs found
Experimental Tests and Preliminary Life Cycle Assessment
Funding Information: Thanks are also due to FCT for the project PTDC/BII-BIO/30884/2017. A.F.P. and M.M.M. thank FCT for funding through the Individual Call to Scientific Employment Stimulus (ref. 2020.01614.CEECIND/CP1596/CT0007 and CEEC-IND/02702/2017, respectively). O.D. is thankful for the Ph.D. grant supported by FCT (2021.05322.BD). Funding Information: This work was funded by Portuguese funds through Fundação para a Ciência e a Tecnologia (FCT/MCTES) in the framework of the projects UIDB/50006/2020, UIDP/50006/2020, and EXPL/BII-BIO/0436/2021 and also by BIP Proof 2022/2023 through UI-Transfer, a cofunding project by European Union through COMPETE 2020-Portugal 2020, CIQUP, Centro de Investigação em Química da Universidade do Porto (UIDB/00081/2020), and IMS, Institute of Molecular Sciences (LA/P/0056/2020). Publisher Copyright: © 2023 The Authors. Published by American Chemical Society.The control of the oxidative stability of biodiesel and blends of biodiesel with diesel is one of the major concerns of the biofuel industry. The oxidative degradation of biodiesel can be accelerated by several factors, and this is most critical in the so-called second generation biodiesel, which is produced from low-cost raw materials with lower environmental impacts. The addition of antioxidants is imperative to ensure the oxidative stability of biodiesel, and these are considered products of high commercial value. The antioxidants currently available on the market are from synthetic origin, so the existence/availability of alternative antioxidants of natural origin (less dependent on fossil sources) at a competitive price presents itself as a strong business opportunity. This work describes and characterizes a sustainable alternative to synthetic antioxidants used in the biodiesel market developed from extracts of vineyard pruning waste (VPW), which are naturally rich in phenolic compounds with antioxidant properties. A hydrothermal extraction process was applied as a more efficient and sustainable technology than the conventional one with the potential of the extracts as antioxidant additives in biodiesel evaluated in Rancitech equipment. The VPW extract showed comparable antioxidant activity as the commercial antioxidant butylated hydroxytoluene (BHT) typically used in biodiesel. The stability of the biodiesel is dependent from the amount of the extract added. Further, for the first time, the assessment of the environmental impacts of using natural extracts to control the oxidative stability of biodiesel in the production process is also discussed as a key factor of the process environmental sustainability.publishersversionpublishe
Synthesis and biological evaluation of Amphotericin B formulations based on organic salts and ionic liquids against Leishmania infantum
Nowadays, organic salts and ionic liquids (OSILs) containing active pharmaceutical ingredients (APIs) are being explored as drug delivery systems in modern therapies (OSILs-API). In that sense, this work is focused on the development of novel OSILs-API based on amphotericin B through an innovative procedure and the evaluation of the respective biological activity against Leishmania infantum. Several ammonium, methylimidazolium, pyridinium and phosphonium organic cations combined with amphotericin B as anion were synthesized in moderate to high yields and high purities by the water-reduced buffer neutralization method. All prepared compounds were characterized to confirm the desired chemical structure and the specific optical rotation ([α]D25) was also determined. The biological assays performed on L. infantum promastigotes showed increased activity against this parasitic disease when compared with the starting chloride forms and amphotericin B alone, highlighting [P6,6,6,14][AmB] as the most promising formulation. Possible synergism in the antiprotozoal activity was also evaluated for [P6,6,6,14][AmB], since it was proven to be the compound with the highest toxicity. This work reported a simple synthetic method, which can be applied to prepare other organic salts based on molecules containing fragile chemical groups, demonstrating the potential of these OSILs-AmB as possible agents against leishmaniasis.info:eu-repo/semantics/publishedVersio
A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions
The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium-and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. Decision support tools AS-ISK Hazard identification Non-native species Risk analysis Climate changepublishedVersio
A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions
The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a ‘very high risk’ of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate ‘rapid’ management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement.publishedVersio
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
More Sustainable Approaches for the Synthesis of N-Based Heterocycles
Fundacao para a Ciencia e Tecnologia ; FEDER [POCI/QUI/60175/2004, PTDC/QUI/(66015)(66826)(66695)-(70383)(70902)(73061)/2006)]. - We would like to thank Fundacao para a Ciencia e Tecnologia, (POCI 2010) and FEDER (Ref. POCI/QUI/60175/2004, PTDC/QUI/(66015)(66826)(66695)-(70383)(70902)(73061)/2006) for financial support
Anatomy and physiology of the respiratory tract
IA 2015: Inhalation Drug Delivery Autumn Schoo