133 research outputs found

    Assessing immediate emotions in the Theory of Planned Behavior can substantially contribute to increases in pro-environmental behavior

    Get PDF
    The Theory of Planned Behavior (TPB) is a highly influential and powerful behavior change model that offers promising guidance on promoting urgently needed, pro-environmental action. Recent pro-environmental research has successfully augmented TPB using anticipated emotions—the emotions an individual consciously predicts they will experience in relation to possible outcomes of their decision. However, immediate emotions—the emotions an individual actually experiences during decision-making—have received far less attention. Given that immediate emotions are relevant to pro-environmental decision-making and can address the theoretical and empirical limitations of TPB, we contend that pro-environmental studies should explicitly examine immediate emotions within the TPB framework. This article aims to stimulate rigorous research that enhances pro-environmental communication and policymaking by providing integrative insights into immediate emotions along with recommendations for evaluating immediate emotions in a pro-environmental TPB context

    Thymidine dinucleotides induce S phase cell cycle arrest in addition to increased melanogenesis in human melanocytes

    Get PDF
    Although the induction of pigmentation following exposure of melanocytes to ultraviolet light in vivo and in vitro is well documented, the intracellular mechanisms involved in this response are not yet fully understood. Exposure to UV-B radiation leads to the production of DNA damage, mainly cyclobutane pyrimidine dimers, and it was recently suggested that the thymidine dinucleotide pTpT, mimicking small DNA fragments released in the course of excision repair mechanisms, could trigger melanin synthesis. We now report that the thymidine dinucleotide pTpT induces melanogenesis both in human normal adult melanocytes and in human melanoma cells. Thus, the SOS- like response suggested by Gilchrest's work to be evolutionary conserved, based primarily on work in murine cells and guinea pigs, is also apparently present in the human. Thymidine dinucleotide is non toxic to melanoma cells and does not induce apoptosis in these cells, but induces S phase cell cycle arrest and a proliferation slow down. Because thymidine excess in culture medium leads to the synchronization of cells in S phase, we investigated whether this phenomenon was involved in the increase in melanin synthesis. We show that melanin synthesis is specifically triggered by the dimeric form of the thymidine and not by the monomeric form pT. Thus, our data strongly support that thymidine dinucleotides pTpT mimic at least part of the effects of ultraviolet irradiation, and may hence represent an invaluable model in the study of the molecular events involved in melanogenesis induction triggered through DNA damage

    Basal Body Positioning Is Controlled by Flagellum Formation in Trypanosoma brucei

    Get PDF
    To perform their multiple functions, cilia and flagella are precisely positioned at the cell surface by mechanisms that remain poorly understood. The protist Trypanosoma brucei possesses a single flagellum that adheres to the cell body where a specific cytoskeletal structure is localised, the flagellum attachment zone (FAZ). Trypanosomes build a new flagellum whose distal tip is connected to the side of the old flagellum by a discrete structure, the flagella connector. During this process, the basal body of the new flagellum migrates towards the posterior end of the cell. We show that separate inhibition of flagellum assembly, base-to-tip motility or flagella connection leads to reduced basal body migration, demonstrating that the flagellum contributes to its own positioning. We propose a model where pressure applied by movements of the growing new flagellum on the flagella connector leads to a reacting force that in turn contributes to migration of the basal body at the proximal end of the flagellum

    A Quantitative 3D Motility Analysis of Trypanosoma brucei by Use of Digital In-line Holographic Microscopy

    Get PDF
    We present a quantitative 3D analysis of the motility of the blood parasite Trypanosoma brucei. Digital in-line holographic microscopy has been used to track single cells with high temporal and spatial accuracy to obtain quantitative data on their behavior. Comparing bloodstream form and insect form trypanosomes as well as mutant and wildtype cells under varying external conditions we were able to derive a general two-state-run-and-tumble-model for trypanosome motility. Differences in the motility of distinct strains indicate that adaption of the trypanosomes to their natural environments involves a change in their mode of swimming

    Shotgun Sequencing Analysis of Trypanosoma cruzi I Sylvio X10/1 and Comparison with T. cruzi VI CL Brener

    Get PDF
    Trypanosoma cruzi is the causative agent of Chagas disease, which affects more than 9 million people in Latin America. We have generated a draft genome sequence of the TcI strain Sylvio X10/1 and compared it to the TcVI reference strain CL Brener to identify lineage-specific features. We found virtually no differences in the core gene content of CL Brener and Sylvio X10/1 by presence/absence analysis, but 6 open reading frames from CL Brener were missing in Sylvio X10/1. Several multicopy gene families, including DGF, mucin, MASP and GP63 were found to contain substantially fewer genes in Sylvio X10/1, based on sequence read estimations. 1,861 small insertion-deletion events and 77,349 nucleotide differences, 23% of which were non-synonymous and associated with radical amino acid changes, further distinguish these two genomes. There were 336 genes indicated as under positive selection, 145 unique to T. cruzi in comparison to T. brucei and Leishmania. This study provides a framework for further comparative analyses of two major T. cruzi lineages and also highlights the need for sequencing more strains to understand fully the genomic composition of this parasite

    The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Impairment of cilia and flagella function underlies a growing number of human genetic diseases. Mutations in <it>hydin </it>in <it>hy3 </it>mice cause lethal communicating hydrocephalus with early onset. Hydin was recently identified as an axonemal protein; however, its function is as yet unknown.</p> <p>Results</p> <p>Here we use RNAi in <it>Trypanosoma brucei </it>to address this issue and demonstrate that loss of Hydin causes slow growth and a loss of cell motility. We show that two separate defects in newly-formed flagellar central pair microtubules underlie the loss of cell motility. At early time-points after RNAi induction, the central pair becomes mispositioned, while at later time points the central pair is lost. While the basal body is unaffected, both defects originate at the basal plate, reflecting a role for TbHydin throughout the length of the central pair.</p> <p>Conclusion</p> <p>Our data provide the first evidence of Hydin's role within the trypanosome axoneme, and reveal central pair anomalies and thus impairment of ependymal ciliary motility as the likely cause of the hydrocephalus observed in the <it>hy3 </it>mouse.</p

    Giardia Flagellar Motility Is Not Directly Required to Maintain Attachment to Surfaces

    Get PDF
    Giardia trophozoites attach to the intestinal microvilli (or inert surfaces) using an undefined “suction-based” mechanism, and remain attached during cell division to avoid peristalsis. Flagellar motility is a key factor in Giardia's pathogenesis and colonization of the host small intestine. Specifically, the beating of the ventral flagella, one of four pairs of motile flagella, has been proposed to generate a hydrodynamic force that results in suction-based attachment via the adjacent ventral disc. We aimed to test this prevailing “hydrodynamic model” of attachment mediated by flagellar motility. We defined four distinct stages of attachment by assessing surface contacts of the trophozoite with the substrate during attachment using TIRF microscopy (TIRFM). The lateral crest of the ventral disc forms a continuous perimeter seal with the substrate, a cytological indication that trophozoites are fully attached. Using trophozoites with two types of molecularly engineered defects in flagellar beating, we determined that neither ventral flagellar beating, nor any flagellar beating, is necessary for the maintenance of attachment. Following a morpholino-based knockdown of PF16, a central pair protein, both the beating and morphology of flagella were defective, but trophozoites could still initiate proper surface contacts as seen using TIRFM and could maintain attachment in several biophysical assays. Trophozoites with impaired motility were able to attach as well as motile cells. We also generated a strain with defects in the ventral flagellar waveform by overexpressing a dominant negative form of alpha2-annexin::GFP (D122A, D275A). This dominant negative alpha2-annexin strain could initiate attachment and had only a slight decrease in the ability to withstand normal and shear forces. The time needed for attachment did increase in trophozoites with overall defective flagellar beating, however. Thus while not directly required for attachment, flagellar motility is important for positioning and orienting trophozoites prior to attachment. Drugs affecting flagellar motility may result in lower levels of attachment by indirectly limiting the number of parasites that can position the ventral disc properly against a surface and against peristaltic flow

    A MAP6-Related Protein Is Present in Protozoa and Is Involved in Flagellum Motility

    Get PDF
    In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function
    corecore