244 research outputs found

    Biotic and Abiotic Drivers of Topsoil Organic Carbon Concentration in Drylands Have Similar Effects at Regional and Global Scales

    Get PDF
    Drylands contain 25% of the world’s soil organic carbon (SOC), which is controlled by many factors, both abiotic and biotic. Thus, understanding how these factors control SOC concentration can help to design more sustainable land-use practices in drylands aiming to foster and preserve SOC storage, something particularly important to fight ongoing global warming. We use two independent, largescale databases with contrasting geographic coverage (236 sites in global drylands and 185 sites in Patagonia, Argentina) to evaluate the relative importance of abiotic (precipitation, temperature and soil texture) and biotic (primary productivity) factors as drivers of SOC concentration in drylands at global and regional scales. We found that biotic and abiotic factors had similar effects on SOC concentration across regional and global scales: Maximum temperature and sand content had negative effects, while precipitation and plant productivity exerted positive effects. Our findings provide empirical evidence that increases in temperature and reductions in rainfall, as forecasted by climatic models in many drylands worldwide, promote declines in SOC both directly and indirectly via the reduction in plant productivity. This has important implications for the conservation of drylands under climate change; land management should seek to enhance plant productivity as a tool to offset the negative impact of climate change on SOC storage and on associated ecosystem services.Estación Experimental Agropecuaria BarilocheFil: Gaitan, Juan Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Universidad Nacional de Luján. Departamento de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Maestre, Fernando T. Universidad Rey Juan Carlos. Escuela Superior de Ciencias Experimentales y Tecnología. Departamento de Biología y Geología, Física y Química Inorgánica; EspañaFil: Bran, Donaldo Eduardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche; ArgentinaFil: Buono, Gustavo Gabriel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; ArgentinaFil: Dougill, Andrew J. University of Leeds. School of Earth and Environment; Reino UnidoFil: Garcia Martinez, Guillermo Carlos. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Esquel; ArgentinaFil: Ferrante, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Guuroh, Reginald Tang. CSIR-Forestry Research Institute of Ghana; GhanaFil: Linstadter, Anja. University of Cologne. Botanical Institute; AlemaniaFil: Massara Paletto, Virginia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Chubut; ArgentinaFil: Thomas, Andrew David. Aberystwyth University. Department of Geography and Earth Sciences; Reino UnidoFil: Oliva, Gabriel Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentin

    Optical Writing of Magnetic Properties by Remanent Photostriction.

    Get PDF
    We present an optically induced remanent photostriction in BiFeO_{3}, resulting from the photovoltaic effect, which is used to modify the ferromagnetism of Ni film in a hybrid BiFeO_{3}/Ni structure. The 75% change in coercivity in the Ni film is achieved via optical and nonvolatile control. This photoferromagnetic effect can be reversed by static or ac electric depolarization of BiFeO_{3}. Hence, the strain dependent changes in magnetic properties are written optically, and erased electrically. Light-mediated straintronics is therefore a possible approach for low-power multistate control of magnetic elements relevant for memory and spintronic applications

    Toward Rare-Earth-Free Permanent Magnets: A Combinatorial Approach Exploiting the Possibilities of Modeling, Shape Anisotropy in Elongated Nanoparticles, and Combinatorial Thin-Film Approach

    Get PDF
    The objective of the rare-earth free permanent magnets (REFREEPM) project is to develop a new generation of high-performance permanent magnets (PMs) without rare earths. Our approach is based on modeling using a combinatorial approach together with micromagnetic modeling and the realization of the modeled systems (I) by using a novel production of high-aspect-ratio (>5) nanostructrures (nanowires, nanorods, and nanoflakes) by exploiting the magnetic shape anisotropy of the constituents that can be produced via chemical nanosynthesis polyol process or electrodeposition, which can be consolidated with novel processes for a new generation of rare-earth free PMs with energy product in the range of 60 kJ/m3 < (BH)max < 160 kJ/m3 at room temperature, and (II) by using a high-throughput thin-film synthesis and high-throughput characterization approach to identify promising candidate materials that can be stabilized in a tetragonal or hexagonal structure by epitaxial growth on selected substrates, under various conditions of pressure, stoichiometry, and temperature. In this article, we report the progress so far in selected phases.This work is supported by European Commission (REFREEPERMAG project) grant number GA-NMP3-SL-2012-280670

    14 Examples of How LLMs Can Transform Materials Science and Chemistry: A Reflection on a Large Language Model Hackathon

    Full text link
    Chemistry and materials science are complex. Recently, there have been great successes in addressing this complexity using data-driven or computational techniques. Yet, the necessity of input structured in very specific forms and the fact that there is an ever-growing number of tools creates usability and accessibility challenges. Coupled with the reality that much data in these disciplines is unstructured, the effectiveness of these tools is limited. Motivated by recent works that indicated that large language models (LLMs) might help address some of these issues, we organized a hackathon event on the applications of LLMs in chemistry, materials science, and beyond. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines

    The Psychological Science Accelerator's COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic

    The psychological science accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data

    The Psychological Science Accelerator's COVID-19 rapid-response dataset

    Get PDF

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Drug-drug interactions and QT prolongation as a commonly assessed cardiac effect - comprehensive overview of clinical trials

    Full text link
    corecore