6,487 research outputs found

    Heavy Quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature

    Get PDF
    We calculate the heavy quarkonium energy levels and decay widths in a quark-gluon plasma, whose temperature T and screening mass m_D satisfy the hierarchy m alpha_s >> T >> m alpha_s^2 >> m_D (m being the heavy-quark mass), at order m alpha_s^5. We first sequentially integrate out the scales m, m alpha_s and T, and, next, we carry out the calculations in the resulting effective theory using techniques of integration by regions. A collinear region is identified, which contributes at this order. We also discuss the implications of our results concerning heavy quarkonium suppression in heavy ion collisions.Comment: 25 pages, 2 figure

    Simulations of NBI-ICRF synergy with the full-wave TORIC package

    Get PDF

    Bethe--Salpeter equation in QCD

    Get PDF
    We extend to regular QCD the derivation of a confining qqˉ q \bar{q} Bethe--Salpeter equation previously given for the simplest model of scalar QCD in which quarks are treated as spinless particles. We start from the same assumptions on the Wilson loop integral already adopted in the derivation of a semirelativistic heavy quark potential. We show that, by standard approximations, an effective meson squared mass operator can be obtained from our BS kernel and that, from this, by 1m2{1\over m^2} expansion the corresponding Wilson loop potential can be reobtained, spin--dependent and velocity--dependent terms included. We also show that, on the contrary, neglecting spin--dependent terms, relativistic flux tube model is reproduced.Comment: 23 pages, revte

    OntoWebML: A Knowledge Base Management System for WSML Ontologies

    Get PDF
    This paper addresses the topic of defining a knowledge base system for representing and managing ontologies according to the WSMO conceptual model. We propose a software engineering approach to this problem, by implementing: (i) the relational model for ontologies that corresponds to the WSML representation of WSMO; (ii) the usage of a well known Web modeling language called WebML, extended by a set of new components for exploiting ontological contents in Web services and Web applications design; and (iii) a Web-based content management system for ontologies editing and reasoning, implemented using the abovementioned software engineering approach

    Bottonium mass - evaluation using renormalon cancellation

    Full text link
    We present a method of calculating the bottonium mass M[Upsilon(1S)] = [2 mb + E(b barb)]. The binding energy is separated into the soft and ultrasoft components E(b barb)=[E(s)+E(us)] by requiring the reproduction of the correct residue parameter value of the renormalon singularity for the renormalon cancellation in the sum [2 mb + E(s)]. The Borel resummation is then performed separately for (2 mb) and E(s), using the infrared safe MSbar mass [bar mb] as input. E(us) is estimated. Comparing the result with the measured value of M[Upsilon(1S)], the extracted value of the quark mass is [bar mb](mu=[bar mb]) = 4.241 +- 0.068 GeV (for the central value alphas(MZ)=0.1180). This value of [bar mb] is close to the earlier values obtained from the QCD spectral sum rules, but lower than from pQCD evaluations without the renormalon structure for heavy quarkonia.Comment: 4 pages, uses espcrc2.sty, presented at QCD0

    On the dimensions of secant varieties of Segre-Veronese varieties

    Get PDF
    This paper explores the dimensions of higher secant varieties to Segre-Veronese varieties. The main goal of this paper is to introduce two different inductive techniques. These techniques enable one to reduce the computation of the dimension of the secant variety in a high dimensional case to the computation of the dimensions of secant varieties in low dimensional cases. As an application of these inductive approaches, we will prove non-defectivity of secant varieties of certain two-factor Segre-Veronese varieties. We also use these methods to give a complete classification of defective s-th Segre-Veronese varieties for small s. In the final section, we propose a conjecture about defective two-factor Segre-Veronese varieties.Comment: Revised version. To appear in Annali di Matematica Pura e Applicat

    Theory and Phenomenology of Heavy Flavor at RHIC

    Full text link
    We review the problem of heavy-quark diffusion in the Quark-Gluon Plasma and its ramifications for heavy-quark spectra in heavy-ion collisions at RHIC. In particular, we attempt to reconcile underlying mechanisms of several seemingly different approaches that have been put forward to explain the large suppression and elliptic flow of non-photonic electron spectra. We also emphasize the importance of a quantitative description of the bulk medium evolution to extract reliable values for the heavy-quark diffusion coefficient.Comment: 8 pages latex, including 10 eps figures; plenary talk at SQM08, Beijing (China), Oct. 06-10, 200

    Violation of Casimir Scaling for Static QCD Potential at Three-loop Order

    Full text link
    We compute the full O(αs4){\cal O}(\alpha_s^4) and O(αs4logαs){\cal O}(\alpha_s^4\log\alpha_s) corrections to the potential VR(r)V_R(r) between the static color sources, where VR(r)V_R(r) is defined from the Wilson loop in a general representation RR of a general gauge group GG. We find a violation of the Casimir scaling of the potential, for the first time, at O(αs4){\cal O}(\alpha_s^4). The effect of the Casimir scaling violation is predicted to reduce the tangent of VR(r)/CRV_R(r)/C_R proportionally to specific color factors dependent on RR. We study the sizes of the Casimir scaling violation for various RR's in the case G=SU(3)G=SU(3). We find that they are well within the present bounds from lattice calculations, in the distance region where both perturbative and lattice computations of VR(r)V_R(r) are valid. We also discuss how to test the Casimir scaling violating effect.Comment: 20 pages, 7 figures, v2: a typo in eq.(13) correcte

    Kink Arrays and Solitary Structures in Optically Biased Phase Transition

    Full text link
    An interphase boundary may be immobilized due to nonlinear diffractional interactions in a feedback optical device. This effect reminds of the Turing mechanism, with the optical field playing the role of a diffusive inhibitor. Two examples of pattern formation are considered in detail: arrays of kinks in 1d, and solitary spots in 2d. In both cases, a large number of equilibrium solutions is possible due to the oscillatory character of diffractional interaction.Comment: RevTeX 13 pages, 3 PS-figure

    Inclusive Decays of Heavy Quarkonium to Light Particles

    Get PDF
    We derive the imaginary part of the potential NRQCD Hamiltonian up to order 1/m^4, when the typical momentum transfer between the heavy quarks is of the order of Lambda_{QCD} or greater, and the binding energy E much smaller than Lambda_{QCD}. We use this result to calculate the inclusive decay widths into light hadrons, photons and lepton pairs, up to O(mv^3 x (Lambda_{QCD}^2/m^2,E/m)) and O(mv^5) times a short-distance coefficient, for S- and P-wave heavy quarkonium states, respectively. We achieve a large reduction in the number of unknown non-perturbative parameters and, therefore, we obtain new model-independent QCD predictions. All the NRQCD matrix elements relevant to that order are expressed in terms of the wave functions at the origin and six universal non-perturbative parameters. The wave-function dependence factorizes and drops out in the ratio of hadronic and electromagnetic decay widths. The universal non-perturbative parameters are expressed in terms of gluonic field-strength correlators, which may be fixed by experimental data or, alternatively, by lattice simulations. Our expressions are expected to hold for most of the charmonium and bottomonium states below threshold. The calculations and methodology are explained in detail so that the evaluation of higher order NRQCD matrix elements in this framework should be straightforward. An example is provided.Comment: 61 pages, 9 figures. Minor change
    corecore