3,860 research outputs found

    High-Frequency-Induced Cathodic Breakdown during Plasma Electrolytic Oxidation

    Get PDF
    The present communication shows the possibility of observing microdischarges under cathodic polarization during plasma electrolytic oxidation at high frequency. Cathodic microdischarges can ignite beyond a threshold frequency found close to 2 kHz. The presence (respectively, absence) of an electrical double layer is put forward to explain how the applied voltage can be screened, which therefore prevents (respectively, promotes) the ignition of a discharge. Interestingly, in the conditions of the present study, the electrical double layer requires between 175 and 260 μs to form. This situates the expected threshold frequency between 1.92 and 2.86 kHz, which is in good agreement with the value obtained experimentally

    Amplification and stability of magnetic fields and dynamo effect in young A stars

    Full text link
    This study is concerned with the early evolution of magnetic fields and differential rotation of intermediate-mass stars which may evolve into Ap stars. We report on simulations of the interplay of differential rotation and magnetic fields, the stability limits and non-linear evolution of such configurations, and the prospects of dynamo action from the unstable cases. The axisymmetric problem delivers a balance between field amplification and back-reaction of the magnetic field on the differential rotation. The non-axisymmetric case involves also the Tayler instability of the amplified toroidal fields. We consider limits for field amplification and apply these to young A stars. Apart from its application to Ap stars, the instability is scrutinized for the fundamental possibility of a dynamo. We are not looking for a dynamo as an explanation for the Ap star phenomenon. The kinetic helicity is concentrated near the tangent cylinder of the inner sphere of the computational domain and is negative in the northern hemisphere. This appears to be a ubiquitous effect not special to the Tayler instability. The latter is actually connected with a positive current helicity in the bulk of the spherical shell giving rise to a small, but non-vanishing alpha-effect in non-linear evolution of the instability.Comment: 13 pages, 14 figures, accepted by Mon. Not. R. Astro

    Fermi surface instabilities in CeRh2Si2 at high magnetic field and pressure

    Full text link
    We present thermoelectric power (TEP) studies under pressure and high magnetic field in the antiferromagnet CeRh2Si2 at low temperature. Under magnetic field, large quantum oscillations are observed in the TEP, S(H), in the antiferromagnetic phase. They suddenly disappear when entering in the polarized paramagnetic (PPM) state at Hc pointing out an important reconstruction of the Fermi surface (FS). Under pressure, S/T increases strongly of at low temperature near the critical pressure Pc, where the AF order is suppressed, implying the interplay of a FS change and low energy excitations driven by spin and valence fluctuations. The difference between the TEP signal in the PPM state above Hc and in the paramagnetic state (PM) above Pc can be explained by different FS. Band structure calculations at P = 0 stress that in the AF phase the 4f contribution at the Fermi level (EF) is weak while it is the main contribution in the PM domain. By analogy to previous work on CeRu2Si2, in the PPM phase of CeRh2Si2 the 4f contribution at EF will drop.Comment: 10 pages, 13 figure

    Valence Instability of YbCu2_2Si2_2 through its quantum critical point

    Get PDF
    We report Resonant inelastic x-ray scattering measurements (RIXS) in YbCu2_2Si2_2 at the Yb L3_{3} edge under high pressure (up to 22 GPa) and at low temperatures (down to 7 K) with emphasis on the vicinity of the transition to a magnetic ordered state. We find a continuous valence change towards the trivalent state with increasing pressure but with a pronounced change of slope close to the critical pressure. Even at 22 GPa the Yb+3^{+3} state is not fully achieved. The pressure where this feature is observed decreases as the temperature is reduced to 9 GPa at 7K, a value close to the critical pressure (\itshape{p\normalfont{c_c}}\normalfont \approx 7.5 GPa) where magnetic order occurs. The decrease in the valence with decreasing temperature previously reported at ambient pressure is confirmed and is found to be enhanced at higher pressures. We also compare the f electron occupancy between YbCu2_2Si2_2 and its Ce-counterpart, CeCu2_2Si2_2

    Incorporating practitioner knowledge to test and improve a new conceptual framework for healthy urban design and planning

    Get PDF
    There are increasing arguments for bridging diverse knowledges and co-producing new knowledge between researchers, professional communities and citizens to create health-promoting built environments. The new THRIVES Framework (Towards Healthy uRbanism: InclusiVe, Equitable, Sustainable) echoes the call that healthy urbanism processes should be participatory and this principle informed the development of the Framework itself, which involved several stages of informal and formal testing with stakeholders, through a process of action research and ‘extended peer review’. Formal feedback about the design of the preliminary Framework and its implementation in built environment practice was gathered through a participatory workshop with 26 built environment and public health professionals in January 2020. Participants were encouraged to share their knowledge, ask questions, critique and provide recommendations. Overall, participants were supportive of the conceptual messages of the THRIVES Framework and more critical of the visual design of the preliminary version. They also questioned whether further resources would be required to implement the Framework. This research created a forum for stakeholders, who may typically be outside the research process, to shape the development of a conceptual framework for healthy urbanism. Further research and collaboration will create resources to bridge the gap between this new conceptualisation and practice

    Product renovation and shared ownership: sustainable routes to satisfying the world's growing demand for goods

    Get PDF
    It has been estimated that by 2030 the number of people who are wealthy enough to be considered as middle class consumers will have tripled. This will have a dramatic impact on the demands for primary materials and energy. Much work has been carried out on sustainable ways of meeting the World’s energy demands and some work has been carried out on the sustainable production and consumption of goods. It has been estimated that with improvements in design and manufacturing it is possible to reduce the primary material requirements by 30% to produce the current demand for goods. Whilst this is a crucial step on the production side, there will still be a doubling of primary material requirements by the end of the century because of an absolute rise in demand for goods and services. It is therefore clear that the consumption of products must also be explored. This is a key areas of research for the UK INDEMAND centre, which is investigating ways of reducing the UK’s industrial energy demand and demand for energy intensive materials. Our ongoing work shows that two strategies would result in considerable reductions in the demand for primary materials: product longevity and using goods more intensively (which may requires increased durability). Product longevity and durability are not new ideas, but ones that can be applied across a raft of goods as methods of reducing the consumption of materials. With long life products there is a potential risk of outdated design and obsolescence, consequently there is a need to ensure upgradability and adaptability are incorporated at the design stage. If products last longer, then the production of new products can be diverted to emerging markets rather than the market for replacement goods. There are many goods which are only used occasionally; these goods do not normally wear out. The total demand for such could be drastically reduced if they were shared with other people. Sharing of goods has traditionally been conducted between friends or by hiring equipment. The use of modern communication systems and social media could enable the development of sharing co-ops and swap spaces that will increase the utilisation of goods and hence reduce the demand for new goods. This could also increase access to a range of goods for those on low incomes. From a series of workshops it has been found that the principal challenges are sociological rather than technological. This paper contains a discussion of these challenges and explores possible futures where these two strategies have been adopted. In addition, the barriers and opportunities that these strategies offer for consumers and businesses are identified, and areas where government policy could be instigated to bring about change are highlighted
    corecore