90 research outputs found

    A High-Protein Diet With Resistance Exercise Training Improves Weight Loss and Body Composition in Overweight and Obese Patients With Type 2 Diabetes

    Get PDF
    OBJECTIVE: To evaluate the effects of two low-fat hypocaloric diets differing in the carbohydrate-to-protein ratio, with and without resistance exercise training (RT), on weight loss, body composition, and cardiovascular disease (CVD) risk outcomes in overweight/obese patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: A total of 83 men and women with type 2 diabetes (aged 56.1 ± 7.5 years, BMI 35.4 ± 4.6 kg/m2) were randomly assigned to an isocaloric, energy-restricted diet (female subjects 6 MJ/day, male subjects 7 MJ/day) of either standard carbohydrate (CON; carbohydrate:protein:fat 53:19:26) or high protein (HP; 43:33:22), with or without supervised RT (3 days/week) for 16 weeks. Body weight and composition, waist circumference (WC), and cardiometabolic risk markers were assessed. RESULTS: Fifty-nine participants completed the study. There was a significant group effect (P ≤ 0.04) for body weight, fat mass, and WC with the greatest reductions occuring in HP+RT (weight [CON: −8.6 ± 4.6 kg, HP: −9.0 ± 4.8 kg, CON+RT: −10.5 ± 5.1 kg, HP+RT: −13.8 ± 6.0 kg], fat mass [CON: −6.4 ± 3.4 kg, HP: −6.7 ± 4.0 kg, CON+RT: −7.9 ± 3.7 kg, HP+RT: −11.1 ± 3.7 kg], and WC [CON: −8.2 ± 4.6 cm, HP: −8.9 ± 3.9 cm, CON+RT: −11.3 ± 4.6 cm, HP+RT: −13.7 ± 4.6 cm]). There was an overall reduction (P < 0.001) in fat-free mass (−2.0 ± 2.3 kg), blood pressure (−15/8 ± 10/6 mmHg), glucose (−2.1 ± 2.2 mmol/l), insulin (−4.7 ± 5.4 mU/l), A1C (−1.25 ± 0.94%), triglycerides (−0.47 ± 0.81 mmol/l), total cholesterol (−0.67 ± 0.69 mmol/l), and LDL cholesterol (−0.37 ± 0.53 mmol/l), with no difference between groups (P ≥ 0.17). CONCLUSIONS: An energy-restricted HP diet combined with RT achieved greater weight loss and more favorable changes in body composition. All treatments had similar improvements in glycemic control and CVD risk markers.Thomas P. Wycherley, Manny Noakes, Peter M. Clifton, Xenia Cleanthous, Jennifer B. Keogh and Grant D. Brinkwort

    Quantification of radial arterial pulse characteristics change during exercise and recovery

    Get PDF
    It is physiologically important to understand the arterial pulse waveform characteristics change during exercise and recovery. However, there is a lack of a comprehensive investigation. This study aimed to provide scientific evidence on the arterial pulse characteristics change during exercise and recovery. Sixty-five healthy subjects were studied. The exercise loads were gradually increased from 0 to 125 W for female subjects and to 150 W for male subjects. Radial pulses were digitally recorded during exercise and 4-min recovery. Four parameters were extracted from the raw arterial pulse waveform, including the pulse amplitude, width, pulse peak and dicrotic notch time. Five parameters were extracted from the normalized radial pulse waveform, including the pulse peak and dicrotic notch position, pulse Area, Area1 and Area2 separated by notch point. With increasing loads during exercise, the raw pulse amplitude increased significantly with decreased pulse period, reduced peak and notch time. From the normalized pulses, the pulse Area, pulse Area1 and Area2 decreased, respectively, from 38 ± 4, 61 ± 5 and 23 ± 5 at rest to 34 ± 4, 52 ± 6 and 13 ± 5 at 150-W exercise load. During recovery, an opposite trend was observed. This study quantitatively demonstrated significant changes of radial pulse characteristics during different exercise loads and recovery phases

    Resistance training with soy vs whey protein supplements in hyperlipidemic males

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most individuals at risk for developing cardiovascular disease (CVD) can reduce risk factors through diet and exercise before resorting to drug treatment. The effect of a combination of resistance training with vegetable-based (soy) versus animal-based (whey) protein supplementation on CVD risk reduction has received little study. The study's purpose was to examine the effects of 12 weeks of resistance exercise training with soy versus whey protein supplementation on strength gains, body composition and serum lipid changes in overweight, hyperlipidemic men.</p> <p>Methods</p> <p>Twenty-eight overweight, male subjects (BMI 25–30) with serum cholesterol >200 mg/dl were randomly divided into 3 groups (placebo (n = 9), and soy (n = 9) or whey (n = 10) supplementation) and participated in supervised resistance training for 12 weeks. Supplements were provided in a double blind fashion.</p> <p>Results</p> <p>All 3 groups had significant gains in strength, averaging 47% in all major muscle groups and significant increases in fat free mass (2.6%), with no difference among groups. Percent body fat and waist-to-hip ratio decreased significantly in all 3 groups an average of 8% and 2%, respectively, with no difference among groups. Total serum cholesterol decreased significantly, again with no difference among groups.</p> <p>Conclusion</p> <p>Participation in a 12 week resistance exercise training program significantly increased strength and improved both body composition and serum cholesterol in overweight, hypercholesterolemic men with no added benefit from protein supplementation.</p

    Association of Resistance Exercise With the Incidence of Hypercholesterolemia in Men.

    Get PDF
    OBJECTIVE: To examine the associations of resistance exercise, independent of and combined with aerobic exercise, with the risk of development of hypercholesterolemia in men. PATIENTS AND METHODS: This study used data from the Aerobics Center Longitudinal Study, which is a cohort examining the associations of clinical and lifestyle factors with the development of chronic diseases and mortality. Participants received extensive preventive medical examinations at the Cooper Clinic in Dallas, Texas, between January 1, 1987, and December 31, 2006. A total of 7317 men aged 18 to 83 years (mean age, 46 years) without hypercholesterolemia at baseline were included. Frequency (times per week) and total amount (min/wk) of resistance and aerobic exercise were determined by self-report. Hypercholesterolemia was defined as a total cholesterol level of 240 mg/dL or higher or physician diagnosis. RESULTS: During a median (interquartile range) follow-up of 4 (2 to 7) years, hypercholesterolemia developed in 1430 of the 7317 men (20%). Individuals meeting the resistance exercise guidelines (≥2 d/wk) had a 13% lower risk of development of hypercholesterolemia (hazard ratio [HR], 0.87; 95% CI, 0.76-0.99; P=.04) after adjustment for general characteristics, lifestyle factors, and aerobic exercise. In addition, less than 1 h/wk and 2 sessions per week of resistance exercise were associated with 32% and 31% lower risks of hypercholesterolemia (HR, 0.68; 95% CI, 0.54-0.86; P=.001; and HR, 0.69; 95% CI, 0.54-0.88; P=.003), respectively, compared with no resistance exercise. Higher levels of resistance exercise did not provide benefits. Meeting both resistance and aerobic exercise guidelines (≥500 metabolic equivalent task min/wk) lowered the risk of development of hypercholesterolemia by 21% (HR, 0.79; 95% CI, 0.68-0.91; P=.002). compared with meeting none of the guidelines. CONCLUSION: Compared with no resistance exercise, less than 1 h/wk of resistance exercise, independent of aerobic exercise, is associated with a significantly lower risk of development of hypercholesterolemia in men (P=.001). However, the lowest risk of hypercholesterolemia was found at 58 min/wk of resistance exercise. This finding suggests that resistance exercise should be encouraged to prevent hypercholesterolemia in men. However, future studies with a more rigorous analysis including major potential confounders (eg, diet, medications) are warranted

    The effect of physical exercise and caloric restriction on the components of metabolic syndrome

    Full text link
    corecore