28 research outputs found

    Fluorescent annulated imidazo[4,5-c]isoquinolines via a GBB-3CR/imidoylation sequence - DNA-interactions in pUC-19 gel electrophoresis mobility shift assay

    Get PDF
    Herein we report the development of a sequential synthesis route towards annulated imidazo[4,5-c]isoquinolines comprising a GBB-3CR, followed by an intramolecular imidoylative cyclisation. X-Ray crystallography revealed a flat 3D structure of the obtained polyheterocycles. Thus, we evaluated their interactions with double-stranded DNA by establishing a pUC-19 plasmid-based gel electrophoresis mobility shift assay, revealing a stabilising effect on ds-DNA against strand-break inducing conditions.Peer reviewe

    Fluorescent annulated imidazo[4,5-c]isoquinolines via a GBB-3CR/imidoylation sequence - DNA-interactions in pUC-19 gel electrophoresis mobility shift assay

    Get PDF
    Herein we report the development of a sequential synthesis route towards annulated imidazo[4,5-c]isoquinolines comprising a GBB-3CR, followed by an intramolecular imidoylative cyclisation. X-Ray crystallography revealed a flat 3D structure of the obtained polyheterocycles. Thus, we evaluated their interactions with double-stranded DNA by establishing a pUC-19 plasmid-based gel electrophoresis mobility shift assay, revealing a stabilising effect on ds-DNA against strand-break inducing conditions.Peer reviewe

    Synthesis of quinone-based heterocycles of broad-spectrum anticancer activity

    Get PDF
    A synthesis of benzo[e][1,2,4]triazines and 1,2,4-triazolospiro[4,5]deca-2,6,9-trien-8-ones has been developed from reactions of amidrazones with 2-chloro-1,4-benzoquinone in EtOAc containing 0.5 mL of piperidine. This highly regioselective and one-pot process provided rapid access to 1,2,4-triazolospiro[4,5]deca-2,6,9-trien-8-ones (60%-70%) and benzo[e][1,2,4]triazines (11%-18%). On reacting amidrazones with 5-hydroxy-1,4-naphthoquinone in an EtOAc/piperidine mixture, the reaction proceeded to give 5-hydroxy-2-(piperidin-1-yl)naphthalene-1,4-dione. The structures of the isolated products were proved by infrared, NMR (2D-NMR), mass spectra, and elemental analyses in addition to X-ray structure analysis. The reaction mechanisms are discussed. The anticancer screening of selected compounds showed broad-spectrum anticancer activity against most melanoma cancer cell lines, ovarian cancer OVCAR-3, central nervous system cancer SF-295 and U251, non-small cell lung cancer NCI-H23, renal cancer SN12C, and colon cancer HCT-15 and HCT-116. The selected compounds exhibited moderate to weak anticancer activity to other cell lines.Peer reviewe

    Correction: Metal complexes as a promising source for new antibiotics

    Get PDF
    Correction for ‘Metal complexes as a promising source for new antibiotics’ by Angelo Frei et al., Chem. Sci., 2020, 11, 2627–2639

    Genetic code expansion for multiprotein complex engineering

    Get PDF
    We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, \u2018MultiBacTATAG\u2019, (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure\u2013function studies of novel eukaryotic complexes using single-molecule F\uf6rster resonance energy transfer as well as site-specific crosslinking strategies

    Conversion of substrate analogs suggests a Michael cyclization in iridoid biosynthesis

    Get PDF
    The core structure of the iridoid monoterpenes is formed by a unique cyclization reaction. The enzyme that catalyzes this reaction, iridoid synthase, is mechanistically distinct from other terpene cyclases. Here we describe the synthesis of two substrate analogs to probe the mechanism of iridoid synthase. Enzymatic assay of these substrate analogs along with clues from the product profile of the native substrate strongly suggest that iridoid synthase utilizes a Michael reaction to achieve cyclization. This improved mechanistic understanding will facilitate the exploitation of the potential of iridoid synthase to synthesize new cyclic compounds from nonnatural substrates
    corecore