90 research outputs found

    The suitability of the IEC 61400-2 wind model for small wind turbines operating in the built environment

    Get PDF
    This paper investigates the applicability of the assumed wind fields in International Electrotechnical Commission (IEC) standard 61400 Part 2, the design standard for small wind turbines, for a turbine operating in the built environment, and the effects these wind fields have on the predicted performance of a 5 kW Aerogenesis turbine using detailed aeroelastic models developed in Fatigue Aerodynamics Structures and Turbulence (FAST). Detailed wind measurements were acquired at two built environment sites: from the rooftop of a Bunnings Ltd. warehouse at Port Kennedy (PK) (Perth, Australia) and from the small wind turbine site at the University of Newcastle at Callaghan (Newcastle, Australia). For both sites, IEC 61400-2 underestimates the turbulence intensity for the majority of the measured wind speeds. A detailed aeroelastic model was built in FAST using the assumed wind field from IEC 61400-2 and the measured wind fields from PK and Callaghan as an input to predict key turbine performance parameters. The results of this analysis show a modest increase in the predicted mean power for the higher turbulence regimes of PK and Callaghan as well as higher variation in output power. Predicted mean rotor thrust and blade flapwise loading showed a minor increase due to higher turbulence, with mean predicted torque almost identical but with increased variations due to higher turbulence. Damage equivalent loading for the blade flapwise moment was predicted to be 58% and 11% higher for a turbine operating at Callaghan and PK respectively, when compared with IEC 61400-2 wind field. Time series plots for blade flapwise moments and power spectral density plots in the frequency domain show consistently higher blade flapwise bending moments for the Callaghan site with both the sites showing a once-per-revolution response

    Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, Southern Indian Ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spain, E. A., Johnson, S. C., Hutton, B., Whittaker, J. M., Lucieer, V., Watson, S. J., Fox, J. M., Lupton, J., Arculus, R., Bradney, A., & Coffin, M. F. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, Southern Indian Ocean. Earth and Space Science, 7(3), (2020): e2019EA000695, doi:10.1029/2019EA000695.Bubble emission mechanisms from submerged large igneous provinces remains enigmatic. The Kerguelen Plateau, a large igneous province in the southern Indian Ocean, has a long sustained history of active volcanism and glacial/interglacial cycles of sedimentation, both of which may cause seafloor bubble production. We present the results of hydroacoustic flare observations around the underexplored volcanically active Heard Island and McDonald Islands on the Central Kerguelen Plateau. Flares were observed with a split‐beam echosounder and characterized using multifrequency decibel differencing. Deep‐tow camera footage, water properties, water column δ3He, subbottom profile, and sediment δ13C and δ34S data were analyzed to consider flare mechanisms. Excess δ3He near McDonald Islands seeps, indicating mantle‐derived input, suggests proximal hydrothermal activity; McDonald Islands flares may thus indicate CO2, methane, and other minor gas bubbles associated with shallow diffuse hydrothermal venting. The Heard Island seep environment, with subbottom acoustic blanking in thick sediment, muted 3He signal, and δ13C and δ34S fractionation factors, suggest that Heard Island seeps may either be methane gas (possibly both shallow biogenic methane and deeper‐sourced thermogenic methane related to geothermal heat from onshore volcanism) or a combination of methane and CO2, such as seen in sediment‐hosted geothermal systems. These data provide the first evidence of submarine gas escape on the Central Kerguelen Plateau and expand our understanding of seafloor processes and carbon cycling in the data‐poor southern Indian Ocean. Extensive sedimentation of the Kerguelen Plateau and additional zones of submarine volcanic activity mean additional seeps or vents may lie outside the small survey area proximal to the islands.We thank the Australian Marine National Facility (MNF) for its support in the form of sea time on RV Investigator , support personnel, scientific equipment, and data management. We also thank the captain, crew, and fellow scientists of RV Investigator voyage IN2016_V01. We also thank specifically the following: T. Martin, F. Cooke, S. L. Sow, N. Bax, J. Ford, and F. Althaus, CSIRO (Commonwealth Scientific and Industrial Research Organisation); Echoview Software Pty. Ltd. (Hobart, Australia); C. Dietz and C. Cook, Central Science Laboratory, University of Tasmania; C. Wilkinson and T. Baumberger, National Oceanic and Atmospheric Administration; R. Carey, University of Tasmania; T. Holmes, Institute for Marine and Antarctic Studies, University of Tasmania; N. Polmear; and A. Post, Geoscience Australia. The overall science of the project is supported by Australian Antarctic Science Program (AASP) grant 4338. E.S.' PhD research is supported by the Australian Research Council's Special Research Initiative Antarctic Gateway Partnership (Project ID SR140300001) and by an Australian Government Research Training Program Scholarship. S.C.J. is supported by iCRAG under SFI, European Regional Development Fund, and industry partners, as well as ANZIC‐IODP. J.M.W. is supported by ARC grant DE140100376 and DP180102280. This is PMEL publication number 4910. All IN2016_V01 data and samples acquired on IN2016_V01 are made publicly available in accordance with MNF policy

    Exploring Quaker organising to consider the possibilities for relational leadership

    Get PDF
    This paper develops the perspective of ‘relational leadership’ by exploring dynamics of influence within Quaker organising. The theory of relational leadership is drawn upon as it is connected with more sustainable and equitable ways of organising. A Quaker context is studied as it is conducive for understanding possibilities for relational leadership because there is no formal hierarchy. By applying three aspects of a relational leadership perspective (mutual influence process [1], momentary [2] and socially co-constructed [3]) to a thematic analysis of interview data, understanding is developed about the potential dynamics of influence and leadership in non-hierarchical organising. Two contributions to relational leadership theory are offered. Firstly, the paper shows a need for greater critical attention to appreciate the potential subtleties and tensions involved in influencing dynamics in non-hierarchical organising; and, secondly, assumptions about the continuous potential for fluidity of influencing are challenged

    Shallow Seafloor Gas emissions Near Heard and McDonald Islands on the Kerguelen Plateau, Southern Indian Ocean

    Get PDF
    Bubble emission mechanisms from submerged large igneous provinces remains enigmatic. The Kerguelen Plateau, a large igneous province in the southern Indian Ocean, has a long sustained history of active volcanism and glacial/interglacial cycles of sedimentation, both of which may cause seafloor bubble production. We present the results of hydroacoustic flare observations around the underexplored volcanically active Heard Island and McDonald Islands on the Central Kerguelen Plateau. Flares were observed with a split‐beam echosounder and characterized using multifrequency decibel differencing. Deep‐tow camera footage, water properties, water column δ3He, subbottom profile, and sediment δ13C and δ34S data were analyzed to consider flare mechanisms. Excess δ3He near McDonald Islands seeps, indicating mantle‐derived input, suggests proximal hydrothermal activity; McDonald Islands flares may thus indicate CO2, methane, and other minor gas bubbles associated with shallow diffuse hydrothermal venting. The Heard Island seep environment, with subbottom acoustic blanking in thick sediment, muted 3He signal, and δ13C and δ34S fractionation factors, suggest that Heard Island seeps may either be methane gas (possibly both shallow biogenic methane and deeper‐sourced thermogenic methane related to geothermal heat from onshore volcanism) or a combination of methane and CO2, such as seen in sediment‐hosted geothermal systems. These data provide the first evidence of submarine gas escape on the Central Kerguelen Plateau and expand our understanding of seafloor processes and carbon cycling in the data‐poor southern Indian Ocean. Extensive sedimentation of the Kerguelen Plateau and additional zones of submarine volcanic activity mean additional seeps or vents may lie outside the small survey area proximal to the islandsThe overall science of the project is supported by Australian Antarctic Science Program (AASP) grant 4338. E.S.' PhD research is sup- ported by the Australian Research Council's Special Research Initiative Antarctic Gateway Partnership (Project ID SR140300001) and by an Australian Government Research Training Program Scholarship. S.C.J. is sup- ported by iCRAG under SFI, European Regional Development Fund, and industry partners, as well as ANZIC‐ IODP. J.M.W. is supported by ARC grant DE140100376 and DP18010228

    Can We Take the Religion out of Religious Decision-Making? The Case of Quaker Business Method

    Get PDF
    In this paper, we explore the philosophical and theological issues that arise when a ‘religious’ process of decision-making, which is normally taken to require specific theological commitments both for its successful use and for its coherent explanation, is transferred into ‘secular’ contexts in which such theological commitments are not shared. Using the example of Quaker Business Method, we show how such a move provokes new theological questions, as well as questions for management studies

    Effect of Dexrazoxane and Amifostine on the Vertebral Bone Quality of Doxorubicin Treated Male Rats

    Get PDF
    Doxorubicin (DOX) is widely used in combination cocktails for treatment of childhood hematological cancers and solid tumors. A major factor limiting DOX usage is DOX-induced cardiotoxicity. However, it is not known whether protectants like dexrazoxane (DXR) and amifostine (AMF) can prevent DOX-mediated bone damage. The present study investigated whether administration of AMF alone or in combination with DXR would prevent any DOX-mediated bone damage. Male rat pups were treated with DOX, DXR, AMF, and their combinations. On neonate day 38, the bone mineral density (BMD), bone mineral content (BMC) and the micro-architecture of the lumbar vertebrae were analyzed. We have shown that when male rats are treated with DOX, DXR, DOX+DXR, AMF, DOX+AMF or DOX+DXR+AMF, there is a decrease in lumbar vertebral BMD (p<0.05). Furthermore, the relative bone volume (BV/TV) was decreased by DXR, DOX+DXR, and DOX+AMF treatments. Interestingly, DOX+AMF significantly increased BV/TV when compared to DXR treatment (p<0.04). The trabecular number (Tb.N) decreased with DXR and DOX+DXR and increased with DOX+AMF treatments. This information will be useful in designing better cancer combination therapies that do not lead to vertebrae deterioration

    Mucosal Targeting of a BoNT/A Subunit Vaccine Adjuvanted with a Mast Cell Activator Enhances Induction of BoNT/A Neutralizing Antibodies in Rabbits

    Get PDF
    We previously reported that the immunogenicity of Hcβtre, a botulinum neurotoxin A (BoNT/A) immunogen, was enhanced by fusion to an epithelial cell binding domain, Ad2F, when nasally delivered to mice with cholera toxin (CT). This study was performed to determine if Ad2F would enhance the nasal immunogenicity of Hcβtre in rabbits, an animal model with a nasal cavity anatomy similar to humans. Since CT is not safe for human use, we also tested the adjuvant activity of compound 48/80 (C48/80), a mast cell activating compound previously determined to safely exhibit nasal adjuvant activity in mice.New Zealand White or Dutch Belted rabbits were nasally immunized with Hcβtre or Hcβtre-Ad2F alone or combined with CT or C48/80, and serum samples were tested for the presence of Hcβtre-specific binding (ELISA) or BoNT/A neutralizing antibodies.Hcβtre-Ad2F nasally administered with CT induced serum anti-Hcβtre IgG ELISA and BoNT/A neutralizing antibody titers greater than those induced by Hcβtre + CT. C48/80 provided significant nasal adjuvant activity and induced BoNT/A-neutralizing antibodies similar to those induced by CT.Ad2F enhanced the nasal immunogenicity of Hcβtre, and the mast cell activator C48/80 was an effective adjuvant for nasal immunization in rabbits, an animal model with a nasal cavity anatomy similar to that in humans

    International Network for Comparison of HIV Neutralization Assays: The NeutNet Report

    Get PDF
    BACKGROUND: Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. METHODS: Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. FINDINGS: PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. CONCLUSIONS: The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation
    corecore