361 research outputs found

    Prediction of spatially distributed seismic demands in specific structures: Ground motion and structural response

    Get PDF
    The efficacy of various ground motion intensity measures (IM’s) in the prediction of spatially distributed seismic demands (Engineering Demand Parameters, EDP’s) within a structure is investigated. This has direct implications to building-specific seismic loss estimation, where the seismic demand on different components is dependent on the location of the component in the structure. Several common intensity measures are investigated in terms of their ability to predict the spatially distributed demands in a 10-storey office building, which is measured in terms of maximum interstorey drift ratios and maximum floor accelerations. It is found that the ability of an IM to efficiently predict a specific EDP depends on the similarity between the frequency range of the ground motion which controls the IM and that of the EDP. An IM’s predictability has a direct effect on the median response demands for ground motions scaled to a specified probability of exceedance from a ground motion hazard curve. All of the IM’s investigated were found to be insufficient with respect to at least one of magnitude, source-to-site distance, or epsilon when predicting all peak interstorey drifts and peak floor accelerations in a 10-storey RC frame structure. Careful ground motion selection and/or seismic demand modification is therefore required to predict such spatially distributed demands without significant bias

    Prediction of spatially distributed seismic demands in specific structures: Structural response to loss estimation

    Get PDF
    A companion paper has investigated the effects of intensity measure (IM) selection in the prediction of spatially distributed response in a multi-degree-of-freedom structure. This paper extends from structural response prediction to performance assessment metrics such as: probability of structural collapse; probability of exceeding a specified level of demand or direct repair cost; and the distribution of direct repair loss for a given level of ground motion. In addition, a method is proposed to account for the effect of varying seismological properties of ground motions on seismic demand that does not require different ground motion records to be used for each intensity level. Results illustrate that the conventional IM, spectral displacement at the first mode, Sde(T1), produces higher risk estimates than alternative velocity-based IM’s, namely spectrum intensity, SI, and peak ground velocity, PGV, because of its high uncertainty in ground motion prediction and poor efficiency in predicting peak acceleration demands

    Probabilistic seismic indoor injury estimation

    Get PDF
    Most injury models in existence either estimate injuries at a regional level and/or focus only on fatalities. In regions with good engineering practice, the likelihood of building collapse is rare and hence fatality risk is also correspondingly low. Research has shown that in such situations non-fatal injuries are likely to result in larger economic loss than fatalities due to their higher incidence, despite non-fatalities having lower consequence. A new building-specific method of indoor injury estimation is proposed in this paper. Injuries are considered due to: (i) occupants being struck by toppling contents; and (ii) occupants losing balance and falling. This model considers the spatial distribution of occupants in the building, time-occupancy relationships, and the severity of injury to occupants. A simple room layout is used to demonstrate the application of the model

    Improved seismic hazard model with application to probabilistic seismic demand analysis

    Get PDF
    An improved seismic hazard model for use in performance-based earthquake engineering is presented. The model is an improved approximation from the so-called 'power law' model, which is linear in log-log space. The mathematics of the model and uncertainty incorporation is briefly discussed. Various means of fitting the approximation to hazard data derived from probabilistic seismic hazard analysis are discussed, including the limitations of the model. Based on these 'exact' hazard data for major centres in New Zealand, the parameters for the proposed model are calibrated. To illustrate the significance of the proposed model, a performance-based assessment is conducted on a typical bridge, via probabilistic seismic demand analysis. The new hazard model is compared to the current power law relationship to illustrate its effects on the risk assessment. The propagation of epistemic uncertainty in the seismic hazard is also considered. To allow further use of the model in conceptual calculations, a semi-analytical method is proposed to calculate the demand hazard in closed form. For the case study shown, the resulting semi-analytical closed form solution is shown to be significantly more accurate than the analytical closed-form solution using the power law hazard model, capturing the 'exact' numerical integration solution to within 7% accuracy over the entire range of exceedance rat

    Transport spin polarization of Ni_xFe_{1-x}: electronic kinematics and band structure

    Get PDF
    We present measurements of the transport spin polarization of Ni_xFe_{1-x} (0<x<1) using the recently-developed Point Contact Andreev Reflection technique, and compare them with our first principles calculations of the spin polarization for this system. Surpisingly, the measured spin polarization is almost composition-independent. The results clearly demonstrate that the sign of the transport spin polarization does not coincide with that of the difference of the densities of states at the Fermi level. Calculations indicate that the independence of the spin polarization of the composition is due to compensation of density of states and Fermi velocity in the s- and d- bands

    Higher-order mutual coherence of optical and matter waves

    Get PDF
    We use an operational approach to discuss ways to measure the higher-order cross-correlations between optical and matter-wave fields. We pay particular attention to the fact that atomic fields actually consist of composite particles that can easily be separated into their basic constituents by a detection process such as photoionization. In the case of bosonic fields, that we specifically consider here, this leads to the appearance in the detection signal of exchange contributions due to both the composite bosonic field and its individual fermionic constituents. We also show how time-gated counting schemes allow to isolate specific contributions to the signal, in particular involving different orderings of the Schr\"odinger and Maxwell fields.Comment: 11 pages, 2 figure

    Quantum Vacuum Experiments Using High Intensity Lasers

    Full text link
    The quantum vacuum constitutes a fascinating medium of study, in particular since near-future laser facilities will be able to probe the nonlinear nature of this vacuum. There has been a large number of proposed tests of the low-energy, high intensity regime of quantum electrodynamics (QED) where the nonlinear aspects of the electromagnetic vacuum comes into play, and we will here give a short description of some of these. Such studies can shed light, not only on the validity of QED, but also on certain aspects of nonperturbative effects, and thus also give insights for quantum field theories in general.Comment: 9 pages, 8 figur

    Allergic Eosinophil-rich Inflammation Develops in Lungs and Airways of B Cell–deficient Mice

    Get PDF
    Immunoglobulins (Ig), particularly IgE, are believed to be crucially involved in the pathogenesis of asthma and, equally, in allergic models of the disease. To validate this paradigm we examined homozygous mutant C57BL/6 mice, which are B cell deficient, lacking all Ig. Mice were immunized intraperitoneally with 10 ÎŒg ovalbumin (OVA) plus alum, followed by daily (day 14–20) 30 min exposures to OVA aerosol (OVA/OVA group). Three control groups were run: OVA intraperitoneally plus saline (SAL) aerosol (OVA/SAL group); saline intraperitoneally plus saline aerosol; saline intraperitoneally plus OVA aerosol (n = 6–7). Lung and large airway tissues obtained 24 h after the last OVA or SAL exposure were examined by light microscopy and transmission electron microscopy (TEM). The Ig-deficient mice receiving OVA/ OVA treatment had swollen and discolored lungs and exhibited marked eosinophilia both in large airway subepithelial tissue (49.2 ± 12.0 cells/mm basement membrane [BM] versus OVA/ SAL control 1.2 ± 0.3 cells/mm BM; P <0.001), and perivascularly and peribronchially in the lung (49.3 ± 9.0 cells/unit area versus OVA/SAL control 2.6 ± 0.6 cells/unit area; P <0.001). The eosinophilia extended to the regional lymph nodes. TEM confirmed the subepithelial and perivascular localization of eosinophils. Mucus cells in large airway epithelium increased from 1.5 ± 0.8 (OVA/SAL mice) to 39.5 ± 5.7 cells/mm BM in OVA/OVA treated mice (P <0.001). OVA/SAL mice never differed from the other control groups. Corresponding experiments in wild-type mice (n = 6–7 in each group) showed qualitatively similar but less pronounced eosinophil and mucus cell changes. Macrophages and CD4+ T cells increased in lungs of all OVA/OVA-treated mice. Mast cell number did not differ but degranulation was detected only in OVA/OVA-treated wild-type mice. Immunization to OVA followed by OVA challenges thus cause eosinophil-rich inflammation in airways and lungs of mice without involvement of B cells and Ig

    A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the J/ψ\rm{J/\psi} and $\Upsilon

    Full text link
    The shapes of the inclusive photon spectra in the processes \Jp \to \gamma X and \Up \to \gamma X have been analysed using all available experimental data. Relativistic, higher order QCD and gluon mass corrections were taken into account in the fitted functions. Only on including the gluon mass corrections, were consistent and acceptable fits obtained. Values of 0.721−0.068+0.0160.721^{+0.016}_{-0.068} GeV and 1.18−0.29+0.091.18^{+0.09}_{-0.29} GeV were found for the effective gluon masses (corresponding to Born level diagrams) for the \Jp and \Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to \gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine αs(1.5GeV)\alpha_s(1.5 {\rm GeV}) and αs(4.9GeV)\alpha_s(4.9 {\rm GeV}). Values consistent with the current world average αs\alpha_s were obtained only when gluon mass correction factors, calculated using the fitted values of the effective gluon mass, were applied. A gluon mass ≃1\simeq 1 GeV, as suggested with these results, is consistent with previous analytical theoretical calculations and independent phenomenological estimates, as well as with a recent, more accurate, lattice calculation of the gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table
    • 

    corecore