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ABSTRACT 
A companion paper has investigated the effects of intensity measure (IM) selection in 

the prediction of spatially distributed response in a multi-degree-of-freedom structure.  This 
paper extends from structural response prediction to performance assessment metrics such as: 
probability of structural collapse; probability of exceeding a specified level of demand or 
direct repair cost; and the distribution of direct repair loss for a given level of ground motion.  
In addition, a method is proposed to account for the effect of varying seismological properties 
of ground motions on seismic demand that does not require different ground motion records to 
be used for each intensity level.  Results illustrate that the conventional IM, spectral 
displacement at the first mode, Sde(T1), produces higher risk estimates than alternative 
velocity-based IM’s, namely spectrum intensity, SI, and peak ground velocity, PGV, because 
of its high uncertainty in ground motion prediction and poor efficiency in predicting peak 
acceleration demands. 
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INTRODUCTION 

Contemporary building-specific seismic performance and loss estimation methodologies 
[e.g. 1, 2, 3] following the Pacific Earthquake Engineering Research (PEER) Centre 
performance-based earthquake engineering (PBEE) framework [4] use ground motion 
intensity measures (IM’s) as the link between seismic hazard and structural response.  The use 
of IM as an interim variable is beneficial in that it also provides a separation between the 
equally complex tasks of seismic hazard and seismic response analyses, which are generally 
performed by different expert personnel.  An alternative to the IM based approach is the direct 
estimation of seismic demands as a function of earthquake source and local site properties 
(e.g. [5]).  This approach is appealing in that no information is ‘lost’ by representing a 
(complex) ground motion time history by some (simplified) IM.  However, because the 
process of seismic hazard and seismic response analyses are coupled in this approach, the 
analyst must have expertise in, and access to: earthquake fault and background seismicity data 
of the region of interest; strong-ground motion prediction and mixed effects regression 
procedures; and seismic response analyses.  This approach generally uses recorded ground 
motion records as input for the seismic responses, although simulated ground motions can 
also be used in a similar fashion (e.g. [6, Chapter 6]).  The broad expertise and information 
required in this approach, as well as its significantly increased computational demands, 
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renders it impractical at present for all but the most important of structures.  This manuscript 
is solely focused on the IM-based approach.  It is important to note however that the 
information ‘lost’ due to the use of an inappropriate IM will generally lead to higher 
uncertainty in seismic response analysis, and therefore an increase in the mean annual 
frequency of exceeding some level of demand [6, Chapter 6] (assuming the median response 
is not significantly underestimated). 

The aforementioned loss estimation methodologies adopting the IM-based approach 
also account for the spatially distributed location of components in the structure by using a 
vector of seismic demands (so-called engineering demand parameters, EDP’s) to describe the 
response.  It is therefore desirable to have an IM that can provide a precise (efficient) and 
unbiased (sufficient) prediction of the spatially distributed demands in structures.  In addition, 
it is also important that the IM can itself be predicted with a relatively small uncertainty 
(predictability).  Bradley et al. [7] investigated the efficiency, sufficiency, and predictability 
of common IM’s when conducting seismic response analysis of a 10 storey RC frame 
structure.  Bradley et al. illustrated that common ground motion IMs are not sufficient with 
respect to all of earthquake magnitude, Mw, source-to-site distance, R, and epsilon, ε, when 
predicting peak interstorey drift ratios and peak floor accelerations at spatially distributed 
locations in a structure, and thus bias will be introduced if the Mw, R, ε distribution of the 
ground motion suite used is different than that of seismic hazard deaggregation. 

This paper is intended to follow-on from Bradley et al. [7] with particular focus on: (1) 
‘correction’ of the seismic demand distributions to account for insufficiency of the adopted 
IM; (2) determination of the annual probability of exceeding a specified level of demand 
(demand hazard); (3) determination of the distribution of direct economic loss for a given 
level of IM; (4) deaggregation of the expected direct economic loss for a given level of IM; 
and (5) determination of the annual probability of exceeding a specified level of direct 
economic loss (loss hazard).  Explicit discussion is also given to the efficiency, sufficiency, 
and predictability of intensity measures in cases where results presented oppose current ideas 
as published in literature. 

The structure used in the analyses presented herein is a 10 storey RC frame structure 
which is further described in Bradley et al. [7]. 

HAZARD DEAGGREGATION AND GROUND MOTION SELECTION 
FOR A RANGE OF IM LEVELS 

Ground motion intensity measures (IM’s) provide the link between the exceedance rate 
of various levels of ground motion (from a seismic hazard curve) and structural response 
(from seismic response analysis).  Consideration of an appropriate IM is discussed and 
investigated for the seismic response of a 10 storey RC frame in a companion paper [7].  The 
five different IM’s used here are: peak ground acceleration (PGA); peak ground velocity 
(PGV), elastic spectral displacement (Sde); inelastic spectral displacement (Sdi); and spectrum 
intensity (SI).  This selection was based on: (1) IMs which have been used by other 
researchers; and (2) IMs that have ‘robust’ ground motion prediction equations which can be 
used to determine ground motion hazard curves for the adopted IM.  Bradley et al. [7, Figure 
1] illustrate the hypothetical site and the seismic hazard curves obtained for the five different 
IMs. 

Selection of ground motions for seismic response analysis should be based on those 
which are most likely to occur at the site in the future (which obviously is unknown).  
Deaggregation of the seismic hazard for a given level of ground motion, IM = im, can be used 
to determine the magnitude (Mw), distance (R), and epsilon (ε) statistics of the ground motion 
hazard, which can then be used as a ‘target’ for selecting ground motion records.  Because 
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different rupture scenarios (Mw, R, ε) have different probabilities of occurrence then 
deaggregation of the seismic hazard is dependent on the specific value of the IM considered.   

The fact that the results of seismic hazard deaggregation are a function of the IM level 
(as well as the IM adopted) indicates that if a wide range of IM levels is considered 
(corresponding to a range of exceedance probabilities of interest), then the deaggregation 
statistics may change significantly.  Thus, different ground motion record suites should be 
used for different IM levels.  Such an approach was adopted by, for example, Goulet et al. [2] 
who used seven different ground motions suites for seven IM levels from 0.1-0.82g 
Sa(T=1.0s).  The need to use different ground motion suites at different IM levels to reduce 
bias is conditional on the insufficiency of the adopted IM to a specific parameter (i.e. Mw, R, 
ε) from the hazard deaggregation.  If an IM is sufficient for all Mw, R, ε then the seismic 
response of some structure to ground motions scaled to IM is conditionally independent of 
Mw, R, ε.  However, Bradley et al. [7] illustrate that common IMs used in seismic response 
analysis do not exhibit sufficiency with respect to all of Mw, R, ε for predicting peak 
interstorey drift ratios and peak floor accelerations. 

Figures 1a-1c illustrate the mean and mean ± one standard deviation values of Mw, R, 
and ε obtained from hazard deaggregation for the site as a function of PGA annual exceedance 
probability.  It is seen that as the probability of exceedance reduces, resulting in larger ground 
motions, both the mean magnitude and epsilon values increase, while the distance decreases.  
Also shown in Figures 1a-1c are the mean and mean ± one standard deviation values of Mw, R, 
and ε of the ground motion suite used by Bradley et al. [7], which was also adopted in this 
study for all intensity levels.  It is clear that the properties of the ground motion suite can be 
quite different than the hazard deaggregation as the exceedance probability varies.  Figures 
1d-1f illustrate the variation in the mean values of Mw, R, and ε for the five different IMs as a 
function of the probability of exceedance of the IM.  While the same trends as mentioned 
above for PGA apply to all of the IMs, there is clearly variation in the mean values for a given 
probability of exceedance.  This can be explained with reference to the usual scenario in 
which small magnitude events at close distances dominate a uniform hazard spectra (UHS) at 
short vibration periods (e.g. PGA), while larger magnitude events at farther distances tend to 
dominate the UHS at longer vibration periods (e.g. Sde and Sdi). In this study, the seismic 
response of the case study structure is investigated over a range of IM levels.  Rather than 
using different ground motion suites for different IMs and IM levels, a single ground motion 
suite is used, and the distribution of the seismic demand obtained is ‘corrected’ to account for 
the difference between the deaggregation and ground motion suite Mw, R, and ε statistics.   

Bradley et al. [7] illustrate that even for a given IM level it maybe difficult to obtain a 
ground motion suite where the Mw, R, and ε statistics closely match some ‘target’ statistics 
from deaggregation.  In such cases, ‘correction’ of the seismic demand distribution due to IM 
insufficiency may also be necessary (particularly for loss estimation, where typically both 
interstorey drifts and floor accelerations are estimated).  As will be shown in the following 
section, the effect of the ‘correction’ depends on the insufficiency of an IM with respect to 
(one or more of) Mw, R, and ε, and the difference between the deaggregation and ground 
motion suite statistics.  Hence, with reference to Figures 1a-1c, in this study, the corrections 
will be most significant at low probabilities of exceedance where the largest difference 
between hazard deaggregation and ground motion properties is observed. 
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Figure 1: Comparison of the mean (solid line) and ± one standard deviation (dashed line) of 
(a) magnitude; (b) source-to-site distance; and (c) epsilon values from hazard deaggregation 
of PGA with the ground motion suite used.  Variation of the mean (d) magnitude; (e) distance; 
and (f) epsilon with annual exceedance probability for the different IMs. 

CORRECTING SEISMIC DEMAND DISTRIBUTIONS 

Bradley et al. [7] illustrated that none of the IMs examined in this manuscript are 
sufficient with respect to all of Mw, R, ε for all peak interstorey drifts and peak floor 
accelerations monitored in the case-study structure.  The advantage of having a sufficient IM 
with respect to some parameter x, is that the distribution of demands obtained from the finite 
number of seismic response analyses, would not be (practically speaking) dependent on the 
distribution of x from the suite of ground motions used (i.e.    xIMEDPfIMEDPf ,||  ).  
However, as no IMs were entirely sufficient with respect to Mw, R, ε then in certain instances 
the properties of the ground motion suite used will affect the results and therefore careful 
ground motion selection is pertinent.  As noted by Bradley et al. [7], despite the large database 
of ground motion records available for time-history analysis it may not be possible to obtain a 
specified number of ground motions which accurately match the distribution of Mw, R, ε 
obtained from hazard deaggregation for the specified level of IM (particularly as Mw and ε 
increase and R reduces).  In such cases it is possible to use the correlation between the 
observed EDPs and some parameter x to ‘correct’ the distribution of  IMEDPf | .  The 
theory behind such a procedure is outlined in the following paragraphs. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Theory of the demand correction procedure 

From the result of multiple regression it is possible to obtain the mean of lnEDP as a 
function of Mw, R, ε (i.e.  ,,,ln RMIMEDP W

) and then integrate over the distribution of Mw, R, ε 

(i.e.  ,, RMf W ) from hazard deaggregation to obtain an unbiased estimate of the ‘true’ 

mean of the lnEDP|IM distribution as given in Equation (1): 

  


 dRddMRMf WW

RM
RMIMEDPIMEDP

W

W
,,ˆ

,,
,,,lnln   (1)

If it is however known that for the given EDP, IM is sufficient with respect to (for 
example) Mw and R, then   ,ln,,,ln IMEDPRMIMEDP W

 , and Equation (1) simplifies to: 

  


 dfIMEDPIMEDP  ,lnln
ˆ  (2)

Similarly, the standard deviation of the lnEDP|IM distribution can be obtained (also 
assuming sufficiency with respect to Mw and R): 

     2ln
2

,ln
2
ln

ˆˆ
IMEDPIMEDPIMEDP df 


    (3)

Furthermore if as a first-order approximation,  ,ln IMEDP  is assumed to be a linear 

function of ε and  f  to have a normal distribution then Equations (2) and (3) become: 

   ,lnln
ˆ

IMEDPIMEDP   (4)

 22
,ln

2
ln

ˆ   bIMEDPIMEDP   (5)

where   and   are the mean and standard deviation of ε obtained from hazard 

deaggregation, and b  is the coefficient in the linear regression   baIMEDPE |ln .  

Equations (1)-(5) form the theoretical basis for the ‘correction’ method proposed by Haselton 
[8] for correcting the collapse capacity of structures due to insufficiency with respect to ε.  As 
noted by Haselton [8], Equations (4) and (5) can: (i) correct bias introduced if the distribution 
of the ground motion suite is significantly different from that of the hazard deaggregation; and 
(ii) potentially reduce dispersion (i.e. improve efficiency).   

The following paragraphs generalise the result obtained above to the case of multiple 
insufficiency.  When an IM is found to be insufficient with respect to multiple parameters 
then the multiple linear regression is of the form: 

  XbX X  aIM,EDPE ln  (6) 

where  ,, RM WX  is a vector of the parameters for which the IM is insufficient; 

 bbb RMW
,,Xb ; and “ ” is the vector ‘dot’ product.  It is trivial to generalise Equations (4) 

and (5) in this case to: 

 XμX,lnln
ˆ

IMEDPIMEDP    (7) 

XX
T

X bΣb 2
,ln

2
ln

ˆ
XIMEDPIMEDP   (8) 

ji XX
T
X bΣb X,ln,lnln,ln

ˆ
IMEDPEDPIMEDPEDP jiji

  (9) 
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where XΣ  is the covariance matrix of the parameters in X obtained from hazard 
deaggregation; and “T” is the vector transpose.  Thus, in the case of multiple insufficiency 
regression is performed over a vector of components, and knowledge of the mean and 
covariance matrix of the hazard deaggregation is necessary.  Figure 2 illustrates the (marginal) 
hazard deaggregation of PGA at the 1/475 exceedance probability with respect to Mw and R 
(Figure 2a), and Mw and ε (Figure 2b).  It can be seen from Figure 2a that there exists little 
correlation between Mw and R, with a correlation coefficient of ρM,R = 0.09.  Figure 2b 
illustrates that Mw and ε however exhibit a strong negative correlation, with ρM,ε = -0.89.  The 
reason for this significant negative correlation between Mw and ε is that they have the same 
effect on observed ground motions at a particular site (and thus must be negatively correlated 
to produce a ground motion with IM = im).  Large Mw ruptures cause large ground motions 
which occur infrequently (compared to smaller Mw ruptures), while small ε values (i.e. around 
ε = 0) cause smaller ground motions which occur more frequently (compared to, for example 
ε = 2).  Figure 2c illustrates the correlations between Mw, R, ε as a function of the exceedance 
probability of PGA for the site considered.  While the correlations do vary with exceedance 
probability the general trends discussed above remain unchanged (similar trends were 
observed for the other IMs considered in this study).  As the correlations are significant, then 
they should not be neglected when computing Equations (8) and (9) (which would lead to a 
significant underestimation of the ‘corrected’ dispersion of the lnEDP|IM distribution for the 
vector of EDP’s). 

Collapse probability may also be an important decision variable for performance and 
loss estimation [9], and it is therefore also necessary to correct the probability of collapse for 
IM insufficiency.  As previously mentioned, Haselton [8] illustrated that collapse capacity 
estimated using Sde is insufficient with respect to ε (and assumed sufficiency with respect to 
Mw, R).  Haselton used an iterative procedure to determine the largest intensity of a specific 
ground motion at which the structure did not collapse, yielding ‘collapse capacity’ data which 
is continuous and can be ‘corrected’ using the aforementioned method.  In the case of loss 
estimation, it is more desirable to use the seismic response analyses conducted with ground 
motions of IM = im (which are used to get the distribution of loss,  IMLf | ), to directly 
estimate the collapse probability.  This however leads to binary data of collapse or no-collapse 
for each ground motion record which requires minor modifications to the above correction 
procedure.  Logistic regression [10] is used here to regress on the binary collapse data.  The 
cumulative distribution of the logistic random variable (the collapse probability) is given by: 

   
 Xb

Xb
X

X

X
X 




a

a
P IMC exp1

exp
,  

(10) 

where X and bX have their same meanings as defined in Equation (6).  The regression 
coefficients (i.e. bX) are obtained by (numerically) maximising the likelihood function for the 
logistic density [10].  Once the regression coefficients have been determined then the 

‘corrected’ probability of collapse, IMCP̂  can be obtained from  XX μ,
ˆ

IMCIMC PP  .   
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Figure 2: Illustration of the correlation within hazard deaggregation at the 1/475 exceedance 
probability for PGA: (a) magnitude and distance (ρM,R|IM = 0.09); and (b) magnitude and 
epsilon (ρM,ε|IM = -0.89); (c) variation in the deaggregation correlations as a function of PGA 
annual exceedance probability. 

 
As with the multiple linear regressions for correcting the demand distributions, 

significance tests should be performed on bX to confirm that there are statistically significant 
trends in the data.  This particularly applies in the case where only a very small proportion of 
the ground motions cause structural collapse, which can produce statistically unstable 
regressions.  If one or more variables in X are found to be statistically insignificant then the 
regression should be re-performed following removal of these variables. 

While Equations (7)-(10) offer a method to correct the distribution of structural 
response, and collapse probability for an insufficient IM, that the procedure to do so becomes 
complex in the case of insufficiency with respect to more than one parameter.  In particular, 
knowledge of the correlation matrix between Mw, R, ε from the hazard deaggregation may not 
be available.  In addition, for insufficiency with respect to multiple parameters the so-called 
curse of dimensionality [11] will mean that large suites of ground motions need to be used in 
order to obtain statistically stable ‘corrected’ results, as noted in a similar context by Baker 
[12].  Therefore, if a small suite of ground motion records is to be used (such as that proposed 
in current code guidelines), ground motions should be selected to match the deaggregation of 
the seismic hazard.  If ‘exact’ ground motion selection to match seismic hazard deaggregation 
is not possible, the above procedure can be used.  Furthermore, adequate ground motion 
selection will likely mean that the effect of the ‘corrections’ is not overly excessive and may 
be neglected if such a level of accuracy is not required. 

For the hypothetical scenario considered in this study (i.e. a single line source) the 
deaggregation at a given IM level is relatively simple.  In reality however, it is common for 

(b) (a) 

(c) 
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the total seismic hazard at a site to have significant contributions from multiple sources which 
may mean that the deaggregated Mw, R, ε distribution is far from a multi-variate normal 
distribution, which has been assumed in the above correction procedure.  In such cases, 
Equations (1) and (3), can be solved by summation over the deaggregation probability mass 
function (PMF) which is the typical output of seismic hazard deaggregation (e.g. Figures 2a 
and 2b). 

Corrections for demand distribution and collapse probability 

Figures 3a and 3b illustrate the regression of the maximum ground floor acceleration 
with Mw and R (a 3-dimensional regression with ε was performed, but can obviously not be 
plotted).  Simply from inspection it can be seen that Sde is notably less sufficient to Mw and R 
compared to PGA.  Table 1 illustrates the numerical values of the regression shown in Figures 
3a and 3b.  It can be seen that when PGA is used to predict the maximum ground floor 
acceleration (amax,1) the dependence on Mw, R and ε is statistically insignificant based on the 
F-test [10].  On the other hand, when Sde is used to predict amax,1, R and ε are significant and 
the corrected and uncorrected values are exp(-0.569) = 0.57 g and exp(-0.527) = 0.59 g, 
respectively.  While the corrected demand in this case is only 4% different than that of the 
uncorrected demand (at an IM level with a 1/475 annual exceedance probability), one can 
appreciate that since the correction is a linear function of the differences in the magnitude, 
distance, and epsilon of the ground motions used in seismic response analysis and those from 
deaggregation, that larger corrections will occur where these differences are larger (i.e. at 
smaller exceedance probabilities as evident in Figure 1).  It is also noted that when viewing 
Table 1, the statistical significance of the ‘b’ values is dependent on both their magnitude as 
well as their uncertainty (due to the scatter in the data). 

Figures 3c and 3d illustrate the logistic regression of the collapse probability (PC|IM) on 
Mw and R, with numerical values given in Table 1.  Figure 3d illustrates that there is some 
dependence of collapse capacity on Mw and ε when scaling ground motions based on Sde.  
Figure 3c also illustrates that there is a dependence on Mw, R when using PGA-scaling.  
However, Table 1 illustrates that the R dependence is statistically insignificant (this is more 
easily examined by looking at the one-dimensional regressions against each of Mw, R and ε). 

The dependencies observed in Figure 3 are somewhat intuitive, with higher magnitude 
ground motions having richer low frequency content and weaker (relatively speaking) high 
frequency content compared with smaller magnitude ground motions.  The trends regarding ε 
are explained in detail by Baker and Cornell [13]. 

Results discussed in the following sections are all based on the use of the correction 
procedure (including statistical testing of significance) and hence for brevity the term 
‘corrected’ is omitted. 
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Figure 3: Illustration of: multivariate regression used to ‘correct’ the distribution of the 
demand given intensity for the maximum ground floor acceleration at the 1/475 probability of 
exceedance using  (a) PGA; and (b) Sde.  Use of multivariate logistic regression to ‘correct’ 
the probability of structural collapse at the 10-4 exceedance probability using: (c) PGA; and 
(d) Sde. 

 
 
Table 1: Illustration of correction procedure applied to the cases of Figure 3. 

EDP IM a bX=(bM, bR, bε) 
μX=(μM, μR, με)  

(Figure 1) 

IMEDPln̂  (Eq (7)) 

or IMCP̂  (Eq (10)) 

corrected 

IMEDPln  or IMCP  

uncorrected 

amax,1 PGA -0.56 (-0.02, -0.001, 0.01)2 (6.95, 18.7, 1.49) -0.686 (-0.685)3 -0.686 

amax,1 Sde 0.54 (-0.0151,-0.03,-0.53) (7.06,18.9,1.38) -0.569 -0.527 

PC|IM PGA 0.32 (0.20, -0.081, -1.18) (7.07, 18.3, 2.59) 0.26 0.21 

PC|IM Sde -3.77 (0.69, -0.015, -0.24) (7.15,18.5,2.49) 0.56 0.64 
1coefficient is statistically insignificant based on t-test at α = 5% significance level 
2all bX coefficients are statistically insignificant based on F-test at α = 5% significance level 
3values in brackets are those estimated using the (insignificant) regression equation 

(b) Sde = 22cm (a) PGA = 0.5g 

(d) Sde = 46cm (c) PGA = 1.0g 
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COLLAPSE AND DEMAND HAZARDS 

Using the suite of ground motions adopted for this study, seismic response analyses 
were conducted by scaling the ground motion records to nine IM values that had annual 
exceedance probabilities ranging from 0.03 to 5x10-5.  Figure 4 illustrates the mean scale 
factor of the ground motion suite (i.e. the average of the scale factors to scale each record to 
IM = im) which was required to scale the ground motions to IM values corresponding to the 
nine different exceedance probabilities.  As one would expect, reducing the exceedance 
probability causes an increase in ground motion intensity and therefore an increase in the 
mean scale factor.  It is also evident that for a given exceedance probability the mean scale 
factor of the ground motion suite is not the same when different IMs are used.  Furthermore, 
the difference between the scale factors using different IMs (for a given exceedance 
probability) increases as the exceedance probability reduces.  For example, at PIM>im = 0.03 
the ratio between the mean scale factors using Sde and SI is 0.77/0.66 = 1.17, while at 
PIM>im = 5x10-5 the ratio is 6.2/4.1 = 1.51.  It should be clear from results presented in Bradley 
et al. [14, Table 3] that the difference between the mean scale factor for the different IMs is 
strongly related to the predictability of the IM (i.e. the uncertainty in the ground motion 
prediction equation, GMPE), since a large uncertainty in the GMPE will significantly increase 
the hazard at low PIM>im. 
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Figure 4: Mean scale factors of ground motion suite using various IMs. 

Probability of structural collapse 

Within the PEER PBEE framework, performance with respect to structural collapse can 
be computed by combining the probability of collapse for a given IM,  imIMCP  , with the 

ground motion hazard curve,  imIMP   to obtain the probability of structural collapse, CP  

[9]: 

   
dIM

dIM

imIMP
imIMCPP

IM

C


   

(11) 

 imIMCP   is initially estimated from the proportion of ground motion records which 

cause structural collapse (defined as sidesway collapse and identified by numerical instability 
[8]) when scaled to IM = im and then corrected using Equation (10).  As  imIMCP   is 
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generally assumed to have a lognormal distribution [9], then the values of  imIMCP   

found at the nine IM levels were used to determine the parameters of this distribution using a 
generalised linear model (GLM) with a probit link [10].  A GLM is used as it allows for non-
constant variance as opposed to conventional Gaussian regression.  Figure 5 illustrates the 
cumulative probability of structural collapse as a function of the IM exceedance probability.  
Important parameters of the lognormal distribution of collapse probability are given in Table 
2.  Firstly, Table 2 illustrates that the dispersion, CIMln , for the collapse fragility is highly 

correlated to the efficiency of the prediction of the maximum interstorey drifts over all floors 
of the structure [7], with Sde and Sdi being the most efficient, followed by SI, PGV and lastly 
PGA.  In particular, the large dispersion in the collapse fragility using PGA was not able to be 
reduced significantly using the ‘correction’ procedure as the logistic regression was 
insignificant when a small proportion of collapses occurred.  Secondly, the collapse 
probability obviously depends on the predictability of the IM.  For example at PIM>im = 5x10-5, 
using SI gives a collapse probability of approximately 0.34 compared to approximately 0.72 
using Sde.  Figure 4 indicates that for PIM>im = 5x10-5 the mean scale factor using SI is 4.1, 
while it is 6.2 using Sde.  Using Figure 4 in an inverse manner gives a scale factor using Sde of 
approximately 4.1 when PIM>im = 3x10-4, an exceedance probability at which the collapse 
probability is approximately 0.31 using Sde (Figure 5).  Hence, for a scale factor of 
approximately 4.1, SI and Sde give collapse probabilities of 0.34 and 0.31, respectively.  Thus, 
with the exception of PGA, the significant difference between the collapse distributions is 
primarily due to the IM predictability. 

 
Table 2: Details of the collapse capacity of the structure using different IMs. 

IM Median, CIM |  CIM |ln   50|2| IMCP * PC (x10-4) 

PGA (g) 1.45 0.70 0.18 5.0 

PGV (cm/s) 107 0.44 0.10 2.1 

Sde (cm) 43.3 0.38 0.21 3.8 

Sdi (cm) 38.3 0.39 0.24 5.2 

SI (cm.s/s) 425 0.41 0.06 1.15 

*IM= 50|2IM  has a 2% (Poissonian) probability of exceedance in 50 years. 
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Figure 5: Probability of structural collapse as a function of IM equivalent annual exceedance 
probability. 
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Seismic demand hazard 

The seismic demand hazard can be computed in a similar manner to the collapse hazard, 
by combining the distribution of structural response for a given ground motion intensity, 
 imIMedpEDPP  , with the seismic hazard curve: 

   
dIM

dIM

imIMP
imIMedpEDPPP

IM

edp


   

(12) 

where edpP  is the probability of exceeding EDP = edp. 

In Equation (12), for each IM the seismic hazard curve,  imIMP  , is obtained from 

Bradley et al. [7, Figure 1], while the seismic response distribution,  imIMedpEDPP  , 

is obtained from seismic response analysis after using the previously proposed correction 
procedure.  Figure 6 illustrates the demand hazard curves for floor acceleration and interstorey 
drift ratios at both lower and upper floors in the case study structure.  There is a negligible 
difference in the demand hazard curves using the various IMs at small EDP levels.  It should 
be noted that the asymptotic values of the demand hazard are equal to the annual collapse 
probability, cP , given in Table 2.  For EDP values which have an exceedance probability of 

less than 10-2, the difference in the demand hazard curves for the different IMs becomes 
evident.  As the demand hazard depends on both the structural response distribution and 
ground motion hazard, then both IM efficiency (i.e. uncertainty in the EDP|IM distribution) 
and IM predictability (i.e. affecting the seismic hazard curve,  imIMP  ) are important.  
Both of these two aspects are clearly evident in Figure 6a which illustrates that for the 2nd 
floor peak acceleration, the demand hazard computed using PGA lies below that of PGV, Sde 
and Sdi, for accelerations up to approximately 1.0g because of its high efficiency [14, Figure 
5].  Similar results for the maximum roof acceleration (Figure 6b) are observed as in the case 
of the Figure 6a, except that the demand hazard using PGA (relative to the other IMs) is 
increased because it is less efficient at predicting accelerations in upper floors, which contain 
significant modification from the characteristics of the structural vibration.  Figure 6c 
illustrates the 3rd-4th floor interstorey drift ratio hazard.  It is clearly seen that using PGA 
results in the largest hazard because of its poor efficiency, while PGV and SI, both give lower 
demand hazards than Sde and Sdi, because of their superior predictability [14, Table 3] despite 
having slightly lower efficiency [14, Figure 4].  The maximum 10th floor-roof interstorey drift 
ratio hazard illustrated in Figure 6d shows similar trends as in Figure 6c. 

As previously noted, representing a complex ground motion with a simple IM generally 
results in increased uncertainty in seismic response analysis and, with all other things being 
equal, gives a greater exceedance probability for a given level of demand than that which 
would be obtained by bypassing the IM approach (e.g. [6, Chapter 6]).  All of the four plots in 
Figure 6 therefore illustrate that the velocity-based IM’s (i.e. SI and PGV) are the preferred 
IM’s in terms of reducing the demand hazard, due to their high predictability despite not 
having the lowest efficiency.  The theoretical reason for the relative importance of efficiency 
and predictability in reducing the demand hazard (as well as the loss estimation results to 
follow) is given in the discussion section later in the manuscript. 
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Figure 6: Demand hazard curves for: (a) maximum 2nd floor acceleration; (b) maximum roof acceleration; (c) 
maximum 3rd-4th floor interstorey drift ratio; and (d) maximum 10th floor-roof interstorey drift ratio. 

 

SEISMIC LOSS ESTIMATION 

The ultimate goal of a seismic performance assessment is to estimate the 
consequences/losses to the entire structure, contents and occupants due to the occurrence of an 
earthquake event.  Seismic loss estimation methods can be used to quantitatively assess 
seismic performance by considering the component inventory of the structure, and their 
vulnerability.  Here the effect of IM selection on seismic loss estimation of the case study 
structure is illustrated.  Only direct repair losses are considered, owing to their maturity 
compared to the consideration of other losses such as human casualties and business 
disruption.  The effects of economic loss amplification (‘demand surge’) and cumulative 
damage due to aftershocks are not considered. 

When conducting a loss assessment of a structure, it is important to consider all of the 
components which have the potential to significantly contribute to the loss due to earthquakes 
causing a wide range of shaking intensities.  Taghavi and Miranda, [15] illustrate that 
structural, non-structural and contents components are significant contributors to the total cost 
in office, hotel and hospital buildings.  The components considered in the case study structure 

(a) 

(c) 

(b) 

(d) 
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are listed in  
Table 3.  It was assumed that all of the contents and non-structural components were 

equally distributed over the height of the building with the exception of the roof mounted 
equipment (located on the roof only), server and network equipment (located on the 3rd, 6th, 
and 10th floors), and elevators (ground floor).   

Mathematical basis of loss estimation 

All components which are used to describe the structure and its inventory are defined by 
fragility and loss functions.  Fragility and loss functions can be combined (for a single 
component) to obtain the relationship between component loss for a given EDP (L|EDP) (e.g. 
[1]).  From the results of seismic response analysis a relationship can be found between 
ground motion intensity measures (IM’s) and various EDP’s throughout the structure.  This 
EDP|IM relationship can be combined with the L|EDP relationship to obtain a relation 
between the loss for a single component, k, (which is dependent on EDPi) given a certain level 
of IM (Lk|IM): 

EDPf IMEDPEDPLIML iikk
d|||    (13)

  2
||

2
|

2
|

2
| d IMLIMEDPEDPLEDPLIML kiikikk

EDPf     (14)

where IMLk
  is the mean loss for component k given IM = im; IMEDPi

f  is the probability 

density function of EDPi given IM = im; 
ik EDPL is the mean loss for component k given 

EDPi = edpi; and 2

ik EDPL  = the variance in the loss for component k given EDPi  = edpi.   

Equations (13) and (14) can be used to obtain the first two moments for the distribution 
of loss given IM for a single component k.  For the case where the structure does not collapse 
it is reasonably assumed that the total direct repair loss for the entire structure can be obtained 
from the summation of the direct repair losses in each component.  More specifically:   
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where NCIMLT ,|  and 
2

,| NCIMLT
  are the mean and variance in the total loss given no collapse; 

Nc is the number of components in the structure; and IMLIML kk ',  is the covariance in the L|IM 

relationship between components k and k’. 
By considering the mutually exclusive and collective exhaustive events of collapse and 

no collapse, the expected loss for a given IM can be computed from: 

  IMCCLIMCNCIMLIML PP
TTT |||,|| 1    (17)

where CLT |  is the mean of the loss given global collapse (assumed independent of IM); IMLT |  

is the mean of the total loss once conditioning on collapse (and no collapse) has been 
removed; and IMCP |  is the probability of collapse given IM.  The standard deviation of the total 

loss given IM, 2
|IMLT

 , although not shown here can be computed in a similar manner (See [3, 
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16] for details). 
 
Table 3: Components and quantities used in the case study loss estimation 

Component Description Quantity  Reference 

Ductile beam-column 
joints 

Post 1960s ductile beam column joints 
(2 beams) 

24 / floor Williams et al. [17] 

Columns Gravity columns (and seismic columns 
on first floor) 

20 on 1st floor, 4 on all 
other floors 

Williams et al. [17] 

Slab-beam-column con-
nections 

Connection of slab to seismic frame 24 / floor Aslani [1] 

Partition Drywall partitions and finish 721 m2 / floor Aslani [1], ATC-58 
[18], Porter et al. [19] 

Exterior glazing 1.5m x 1.8m standard glass panes 99 panes / floor ATC-58 [18] 

Acoustical ceiling 0.6m x 1.2m tiles with Aluminium 
frames  

693 tiles / floor ATC-58 [18], Porter 
et al. [19] 

Automatic sprinklers 3.7m sections of sprinkler piping 23 sections / floor Porter et al. [19] 

Servers and network 
equip 

Typical $260,000 on floors 3,6, 
and 10 

ATC-58 [18] 

Computers and printers Typical $93000 / floor ATC-58 [18] 

Bookcases and file cabi-
nets 

Typical $16200 / floor ATC-58 [18] 

Roof mounted equipment Coolers, airconditioning etc. $600,000 on roof ATC-58 [18] 

Workstation desks Typical $21600 / floor Buchan [20] 

Generic acceleration sen-
sitive 

fire protection systems, HVAC, Heat-
ing, cooling, pumps, plumbing, toilets 

$100,000 / floor Aslani [1] 

Generic drift sensitive vertical piping, bath tubs, F.H.C, Ducts $100,000 / floor Aslani [1] 

 

Mean and standard deviation of loss given intensity 

Figure 7a illustrates the expected loss given intensity (at equivalent probabilities of exceed-
ance obtained from seismic hazard curves [7]) computed for the case study structure using the 
five IMs.  It is noted that when shown in logarithmic scale the comparative trend between the 
different IM’s is very similar to the mean scale factor applied to the ground motion suite as 
shown in Figure 4.  The expected loss for a given IM depends on both the predictability of the 
IM (giving the equivalent probability of exceedance); the efficiency of the IM at predicting 
the spatially distributed demands in the structure; and the uncertainty in the damage states of 
the components in the structure [1, 3] (which are obviously independent of the choice of IM).  
In Figure 7a it is clear that the difference between the IMs in terms of predictability is more 
significant than the difference in efficiency, with the hierarchy of the IMs closely related to 
the predictability (e.g. as shown by the similarity of Figure 4 and Figure 7a).  It should be 
noted that the reason for the reduction in the expected loss with increasing intensity based on 
PGA, relative to other IMs, is because of the large uncertainty in the collapse fragility curve 
using PGA.  This large uncertainty means that it is more likely to have collapse at small IM 
levels (increasing the total loss), but less likely (compared to other IMs) at smaller exceedance 
probabilities (e.g. Figure 5). 
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Figure 7: Loss given intensity measure at equivalent exceedance probabilities: (a) expected loss; (b) 
dispersion in loss (perfect correlations); (c) ratio of corrected and uncorrected expected loss; and (d) 
ratio of corrected and uncorrected dispersion in loss. 

 
In addition to the expected loss, uncertainty in loss given intensity is also important.  

The uncertainty depends on the correlations between demand, damage, and loss for different 
components (via IMLIML kk ',  in Equation (16)).  The consideration of component correlations 

in seismic loss estimation is complicated by a lack of empirical data for their determination 
and mathematical methodologies for their consideration.  Further details on the consideration 
of correlations in such a framework as that presented here can be found in Bradley and Lee 
[21].  As it is not the focus in the present study only the upper and lower bound assumptions 
of perfect and no correlations have been considered herein. 

Figure 7b illustrates the lognormal standard deviation (dispersion) in the loss given 
intensity (for an equivalent exceedance probability) when perfect correlations are assumed 
between demand, damage and loss in different components.  As the ground motion intensity 
increases the dispersion in the loss reduces (while the expected loss increases), as also noted 
by Krawinkler [22, Figure 6.2].  Hence, for a given probability of exceedance (obtained from 
a seismic hazard curve) those IMs which give the lowest expected loss will consequently give 
a higher dispersion in loss (which is observed when comparing the different IM’s in Figure 7a 
and 7b). 

Figure 7c and Figure 7d illustrate the ratios of the corrected to uncorrected losses for the 
mean and dispersion of the loss.  It can be seen that while there is some differences between 
the different IMs, there is a clear trend in the ratios as a function of the annual exceedance 
probability.  Figure 7c illustrates that the mean corrected losses are larger for large 
exceedance probabilities and smaller for small exceedance probabilities.  The first of these 

(a) (b) 

(c) (d) 
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observations can be directly attributed to the effect of epsilon (and not to correction of the 
collapse probability, which was generally statistically insignificant for these exceedance 
rates), since from Figure 1 it can be seen that the magnitude and distance distributions are 
very similar for this exceedance probability.  The reduction in loss at small exceedance 
probabilities can also be attributed to correction of epsilon, but also affected by a reduction in 
the corrected collapse probability, as also observed by Haselton [8].  While Figure 7c 
illustrates that corrected expected loss is reduced for small exceedance probabilities, Figure 7d 
illustrates that the corrected dispersion in the loss increases.  This observation is due to the 
reduction in the collapse probability at these small exceedance probabilities, which increases 
the contribution of the uncertainty due to non-collapse (see Bradley and Lee [23] for further 
details). 

While predictability of an IM appears to be the dominant effect from the preceding 
paragraphs, the efficiency of the various IMs, however, affects on distribution of the loss for a 
given intensity.  This effect is particularly noticeable in terms of the contribution of 
acceleration- and displacement-sensitive components.  Figure 8 illustrates the deaggregation 
of the expected loss given intensity (which has a 1/475 probability of exceedance) using PGA 
and Sde.  Figure 7 illustrates that at this probability of exceedance, the expected loss using the 
two IMs is similar.  As PGA is efficient at predicting acceleration demands, but inefficient at 
predicting displacement demands (and vice versa for Sde), then the deaggregation of the 
expected loss using PGA indicates a reduction in the proportion of losses due to acceleration-
sensitive components (e.g. acoustical ceiling, computers, servers/network, roof mounted 
equipment, elevator) compared to Sde.  Similarly, using Sde results in a reduction of the 
proportion of losses due to drift-sensitive components (e.g. beams/columns, slab-frame 
connections, partitions, paint) compared to PGA. 

Beams/Columns  16%

Slab-frame      
connections  11%

Partitions  25%

Ext glazing< 1%
Acoustical ceiling  9%

Sprinklers< 1%
Computers  4%

Servers/network
  16%          

Roof mounted 
equip  < 1%  

Elevator 4%

Paint  5%

Generic drift sens  4%
Generic acc sens  5%
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Figure 8: Deaggregation of expected loss at PIM>im = 1/475 using: (a) IM = PGA; and (b) IM = Sde. 

 
Figure 8 illustrates that for the particular structure considered the loss is significantly 

contributed to by structural, non-structural, and contents components, which are sensitive to 
both drift and acceleration demands throughout the structure.  These features of the loss for 
this particular structure should be borne in mind when interpreting the results of the loss 
estimation presented in both this and the next section.  Alternatively, if this same 10 storey 
frame structure represented a hospital building, with earthquake losses likely to be primarily 
due to damaged medical contents, then it is likely that PGA would be the most appropriate IM 
because of its efficient prediction of acceleration demands. 

(a) (b) 
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Loss hazard 

The loss hazard is computed by integrating the distribution of loss for a given intensity 
(defined by the mean and standard deviation discussed above) and the ground motion hazard 
curve and gives the probability of exceeding a specified level of direct repair loss (i.e. 
excluding casualties and business disruption): 

dIM
dIM

d
G IM

IMLL TT

   (18)

where IMLT
G  is the CCDF of the total loss given IM. 

Figure 9a and 9b illustrate the resulting loss hazard curves for the cases of zero and 
perfect component correlations, respectively, while Table 4 provides numerical values for the 
1/475 and 1/2475 exceedance probabilities.  With either assumption it can be seen that using 
SI and PGV give the smallest probability of exceedance for a given loss or vice versa.  This 
result is due to the high predictability of SI and PGV, and the fact that they are also relatively 
efficient at predicting the spatially distributed acceleration and displacement demands in the 
case study structure [7].  The relative hierarchy of the other IMs is dependent on the value of 
loss being considered, with PGA being the highest over small loss values, but then dropping 
below Sde and Sdi at higher loss values.  The reason for the relatively poor performance of Sde 
and Sdi is that they are have a poor predictability (relative to the other IMs), and despite 
providing high efficiency for peak interstorey drift ratios in the central portion of the structure 
(where the maximum drift ratios occur over the height of the structure), they are inefficient at 
predicting peak floor accelerations, and interstorey drifts in upper floors which are dominated 
by higher vibration modes.   
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Figure 9: Loss hazard curves for: (a) no correlations between components; and (b) perfect correlations 
between components.  

Table 4: Tabulated loss values for specified exceedance probabilities. 

Exceedance 
probability 

Correlation 
assumption 

Loss ($M) given exceedance probability 

PGA PGV Sde Sdi SI 

1/475 
(2.1x10-3) 

None 2.8 2.5 3.5 3.6 2.3 

Perfect 5.1 3.4 5.1 5.3 3.2 

1/2475 
(4.0x10-4) 

None 11.0 5.2 9.2 11.0 4.4 

Perfect 15.0 10.6 15.0 15.8 10.0 

(a) (b) 
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DISCUSSION 

Uncertainties in both the prediction of ground motion (predictability) and seismic 
response (efficiency) affect the computation of the demand hazard.  The total uncertainty in 
the seismic response can be shown to be [24]: 

2
,,ln

22
ln,,ln SRMIMIMEDPSRMEDP b    (19)

where 
SRMEDP ,,ln  is the standard deviation in the demand given magnitude, source-to-site 

distance, and other site conditions; 2
ln IMEDP  is the variance in the demand given intensity 

(from seismic response analysis); 2
,,ln SRMIM  is the variance in the intensity measure given 

magnitude, source-to-site distance, and other site conditions (from a ground motion prediction 
equations); and b is the coefficient in the relationship IMbaIMEDP lnln  .  To further 

simplify Equation (19), Cornell et al. [25] note that b = 1 is a good approximation for the 
seismic response of moment frames. 

The fact that the total uncertainty in the demand in Equation (19) is of a square-root-
sum-of-squares form means that the larger of the two uncertainties will dominate.  Consider 
the prediction of the 3rd-4th floor interstorey drift ratio of the case study structure.  Using Sde 
the predictability is 0.69 [14, Table 3]; while the efficiency is approximately 0.36 [14, Figure 

4]; giving a total uncertainty of 78.036.069.0 22  .  Alternatively SI has a predictability 
of 0.59 [14, Table 3] and an efficiency of approximately 0.43 [14, Figure 4] giving a total 
uncertainty of 0.73.  Because the uncertainty in the ground motion prediction is typically 
larger than that of the seismic response uncertainty, then it is a more dominant uncertainty in 
the computation of the demand hazard (as well as loss estimation computations) 

The consideration of the importance of both efficiency and predictability can be used to 
explain the majority of the observations presented in this manuscript (and others for that 
matter).  For example, while inelastic spectral displacement would be expected to give a better 
prediction than elastic spectral displacements for structures in the non-linear range (i.e. more 
efficient), Figure 10 of Tothong and Cornell [26] illustrates that as the extent of non-linearity 
increases (quantified by an R factor) the uncertainty in the prediction of Sdi increases up to 
dispersions of 0.76.  These two differences (i.e. improved efficiency, but reduced 
predictability) basically negate each other to give the similar demand hazards presented 
herein.  The same argument as above can be made between the use of PGA and Sde.  Because 
of its sufficiency and efficiency in predicting peak interstorey drift ratios many have made the 
comment that Sde is better that PGA (e.g. [24]).  It is the demand hazard, however, which 
should be used for comparing the repercussions of IM selection, as it provides a result which 
depends on IM efficiency, sufficiency and predictability. 

Somewhat of a disclaiming statement is warranted in regard to the previous paragraph.  
The authors are not suggesting one should simply select those intensity measures which are 
the most predictable.  Recall that bias in the predicted distribution of EDP (sufficiency) was 
strongly correlated to efficiency of the IM for predicting the EDP.  If one is trying to estimate 
the response of an elastic single-degree-of-freedom system it is unquestionably better to use 
Sde (which is perfectly efficient and sufficient) than using PGA and having to take care in 
selecting ground motion records to obtain (practically) the same result.  What the authors are 
simply suggesting is that there is a negative impact on performance assessment if an IM is 
selected which is difficult to predict and does not strongly relate to the seismic demand being 
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predicted.  An example from this paper is the use of Sde to predict peak accelerations.  In this 
case Sde is both less efficient and less predictable than PGA resulting in a higher demand 
hazard.  As PGA and Sde give similar hazards for displacement demands then it is the over-
prediction of the acceleration demands that causes Sde (and Sdi for that matter) to result in 
higher loss estimation results (Figures 7 and 9). 

An obvious improvement on the work presented here would be the use of a vector-
valued intensity measure [12], comprising scalar intensity measures which effectively predict 
high and low frequency dominated seismic responses (accelerations and displacements).  
Further to this, there is now an emergence of structure-specific demand prediction 
relationships, where the structure in consideration is subjected to hundreds if not thousands of 
ground motion records covering a range of magnitude and distance ranges (e.g. [5]).  
Regression using mixed-effects models can then be performed on the seismic demand (as 
opposed to simply the seismic intensity as is done to develop ground motion prediction 
equations).  The problems with this approach are obviously the large (but ever-reducing) 
computational demand; correct selection of the database of records to use (making sure ‘host’ 
records are capable of being observed at the ‘target’ site of the structure); expertise to carry 
out the regression; and handling of regression equations in the Mw, R space poorly constrained 
by data.  Furthermore, if this approach is to be extended to loss estimation, then uncertainties 
in the component fragility and loss will require regression of uncertain losses for each ground 
motion in the database, further complicating the regression procedure. 

CONCLUSIONS 

This paper has examined the effect of intensity measure (IM) selection on the results of 
a seismic performance assessment of a 10 storey RC frame structure.  The intensity measures 
examined were: peak ground acceleration, PGA; peak ground velocity, PGV; elastic and 
inelastic spectral displacement, Sde and Sdi; and spectrum intensity, SI.   

A method, based on multivariate regression, was proposed to account for the 
dependence of seismic response on parameters such as moment magnitude, Mw, source-to-site 
distance, R, and epsilon, ε, such that the same ground motion suite can be used over a range of 
different ground motion intensity levels. 

Comparison of demand and loss hazard curves using the various IMs illustrates that the 
uncertainty in the ground motion prediction equation (predictability) typically is more 
significant than uncertainty in the seismic response prediction (efficiency).  Most notably, 
results illustrate that the conventional IM, spectral displacement at the first mode, Sde(T1), can 
predict peak drift demands well, but its poor prediction of peak accelerations leads to higher 
loss estimates than alternative velocity-based IM’s, namely spectrum intensity, SI, and peak 
ground velocity, PGV. 

The structure used to obtain the loss estimation results presented had a component 
inventory such that the losses due to drift- and acceleration-sensitive components were both 
significant in contributing to the total loss.  Clearly, if the structure had a different purpose, 
i.e. a hospital, then the total loss would primarily be comprised by damage to medical 
equipment which will most likely be acceleration-sensitive.  In such a case, PGA is likely to 
be the most appropiate intensity measure for use in loss estimation. 
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