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ABSTRACT 

An improved seismic hazard model for use in performance-based earthquake 

engineering is presented.  The model is an improved approximation from the so-called 'power 

law' model, which is linear in log-log space.  The mathematics of the model and uncertainty 

incorporation is briefly discussed.  Various means of fitting the approximation to hazard data 

derived from probabilistic seismic hazard analysis (PSHA) are discussed, including the 

limitations of the model.  Based on these 'exact' hazard data for major centers in New Zealand, 

the parameters for the proposed model are calibrated.  To illustrate the significance of the 

proposed model, a performance-based assessment is conducted on a typical bridge, via 

probabilistic seismic demand analysis (PSDA).  The new hazard model is compared to the 

current power law relationship to illustrate its effects on the risk assessment.  The propagation 

of epistemic uncertainty in the seismic hazard is also considered.  To allow further use of the 

model in conceptual calculations, a semi-analytical method is proposed to calculate the 

demand hazard in closed-form.  For the case study shown, the resulting semi-analytical 

closed-form solution is shown to be significantly more accurate than the analytical closed- 

form solution using the power law hazard model, capturing the ‘exact’ numerical integration 

solution to within 7% accuracy over the entire range of exceedance rate. 
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INTRODUCTION 

Performance-based earthquake engineering (PBEE) has emerged as a cornerstone of 

modern earthquake engineering as it attempts to capture the performance of structures over 

the full spectrum of structural behaviour, from initial elastic response through to global 

instability, when subjected to a range of ground-motion excitations.  Seismic performance can 

be presented in various forms, some of the most common being: annual rate of exceeding 

some structural demand parameter; annual rate of exceeding some financial loss; expected 

annual loss (EAL); and the probability of exceeding some loss given an earthquake scenario.  

In order to obtain the majority of the above measures, relationships must be defined between: 

seismic intensity and recurrence rate; seismic intensity and structural demand; and structural 

demand and financial loss.  The focus of this paper in particular is the relationship describing 

the occurrence over time of a given ground-motion intensity measure.  This relation, 

commonly in the form of a ground-motion intensity measure and annual rate of exceedance, is 

typically obtained by conducting probabilistic seismic hazard analysis (PSHA) [1-3].  It is 

advantageous to define a relationship to represent this so-called ‘seismic hazard curve’ so that 

PBEE assessments can be made using analytical or numerical integration techniques, allowing 

for the propagation of uncertainty in the hazard model. 

Sewell et al. [4] proposed the following power law expression for the relationship 

between annual rate of exceedance and ground-motion intensity: 

kIMkIMv  0)(  (1) 

Where IM = ground-motion intensity; v(IM) = annual rate of exceedance of a ground-

motion of intensity IM; and k0 and k are empirical constants.  As seismic hazard curves are 

typically plotted on a log-log scale, Equation 1 is linear in log-log space.  This form of 
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parametric equation is primarily used when combined with a similar power law relationship 

for seismic intensity to demand, which permits a closed form solution for the demand hazard 

to be obtained (e.g. [4-8]).  This closed-form solution will provide a reasonable estimate of the 

demand hazard in the range of exceedance rate that the constants of Equation (1) are fitted.  

There are several methods of fitting these parameters, for example it was proposed [8] that the 

curve defined by Equation 1 be fitted through seismic hazard data at the Design Basis 

Earthquake (DBE) and Maximum Considered Earthquake (MCE) intensity levels which have 

10% and 2% probabilities of exceedance in 50 years, respectively.  Constraining the curve to 

pass through these points yields the following parameter values: 
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where IMDBE, IMMCE, vDBE, vMCE are the ground-motion intensities and annual rates of 

exceedance at the DBE and MCE intensity levels, respectively; and ln(●) is the natural 

logarithm of (●).  A typical comparison of a seismic hazard curve for a Wellington (NZ) site 

(obtained by performing PSHA) and Equation (1) is given in Figure 1.  It can be seen that due 

to the typical 'concave from below' shape of the hazard curve, Equation (1) significantly over 

estimates the hazard for ground-motion intensities below the DBE and above the MCE 

intensity levels, respectively.  Equation (1) also slightly underestimates the hazard for 

intensities between the DBE and MCE levels.  For example, at IM = 0.1g Sa, Equation (1) 

over predicts the rate of exceedance by a factor of eight.  Hence, while the power law is an 

adequate local approximation to the hazard curve in the vicinity of the DBE and MCE , over 

several orders of magnitude the rate of exceedance, v , is poorly approximated (i.e. from v = 

100-10-6). 

This inadequacy of Equation (1) is not significant for performance-based design if only 

a small range of exceedance frequencies are considered (and hence Equation (1) can be fitted 
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appropriately for this range).  However, for financial risk calculations, where the full range of 

the hazard is of interest the use of the power law model will lead to significant inaccuracies.  

Previous researchers [9] have tried to alleviate this inaccuracy for more frequent earthquake 

events by only considering rates of exceedance up to a certain threshold value when using the 

power law model.  The value of this threshold is however subjective and consequently not 

applicable in general.  Others [10] have tried fitting a lognormal distribution to the data, but 

its implementation is difficult as it cannot consider rates greater than one and its parametric 

form involves the error function, erf(●). 

While it is possible to perform PBEE calculations using the raw data from the seismic 

hazard curve directly, for certain sites the hazard data provided is sparse and significant 

interpolation between the data points is required; e.g. Kunnath et al. [11] used Equation 1 to 

interpolate between three hazard data points. 

Therefore, it can be seen that a parametric curve which is non-linear in log-log space 

and more accurately captures the actual hazard data is required for use in financial risk 

assessments.  This paper aims at developing improved parametric seismic hazard curves based 

on the above objectives.  A semi-analytical closed form solution for the demand hazard using 

the new hazard model is presented, allowing the demand hazard to be computed without 

requiring numerical integration.  This allows the use of the proposed hazard model in ‘rapid’ 

calculations of the demand hazard, similar to the analytical solution that can be obtained 

utilizing Equation (1), but with significantly enhanced accuracy over a large range of demand. 

HYPERBOLIC MODEL IN LOG-LOG SPACE 

Model Development 

As the shape of the hazard curves typically have a 'concave from below' global shape (in 

log-log space), then it would seem reasonable to approximate the curve with a hyperbola of 
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the form y=α/x.  Figure 2 illustrates the use of a reference origin that can be used to envisage 

how the hyperbola can be expressed in the ln(v)–ln(IM) plane.  The parametric curve has both 

vertical and horizontal asymptotes and is given by: 
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where vasy and IMasy are the horizontal and vertical asymptotes, respectively; α is constant; 

and ε = a random variable representing uncertainty with mean zero and standard deviation βH.  

Hence by rearranging, Equation (3) can be expressed as either a function of v or IM, the 

median values of which are given in Equation (4).  The three unknown parameters vasy, IMasy, 

and α are determined using data fitting techniques, as described in the following sub-section. 
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The random variable, ε (Equation (3)), can be used to account for epistemic (modelling) 

uncertainty in the seismic hazard.  This epistemic uncertainty is obtained through the use of 

logic tree weightings for different ground-motion prediction relationships [12-14]. 

Fitting to PSHA data 

To determine the parameters of the proposed hazard equation for given hazard data, the 

technique of (non-linear) least-squares regression was used.  In the following discussions the 

hyperbolic model is used in the form of Equation (4a), so that errors are measured as 

deviations of v between the data and the model.  As the overall shape of the hazard curve is of 

interest then it is desired to minimise the relative error between the data and the proposed 

curve and not the absolute error.  The latter would lead to very accurate prediction of the data 

with large values of v, but poor prediction of small values.  Equivalently, it is typical to 

minimise the logarithms of the error; then the least squares problem becomes: 
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where vi = data points obtained via PSHA; v(IMi) = value of v obtained from parametric 

equation; and ri = the least square residual for each data point. 

A measure of the ‘goodness-of-fit’ of the parametric curve to the seismic hazard data 

can be objectively determined from the standard deviation (denoted as βF) of the residuals, ri, 

obtained from the regression analysis.  The lower the value of βF, the better the hyperbolic 

model fits the raw hazard data.  Table 1 (discussed in the following section) gives the values 

of βF for several regions in New Zealand. 

APPLICATION TO SEISMICITY DATA 

To illustrate the applicability of the proposed hyperbolic model, seismic hazard curve 

data for the main centres in New Zealand was obtained from Stirling et al. [15].  When the 

least squares regression is performed for both Peak Ground Acceleration (PGA) and elastic 

Spectral Acceleration (Sa) at a period of 1.5 seconds then Figures 3a and 3b result.  It can be 

seen that the accuracy of the hyperbolic model is maintained over the full range of data for 

both regions of high and low seismicity.  Only the PGA seismic hazard curve for Dunedin is 

poorly approximated by the parametric curve due to its large 'curvature' for large IM values 

and then smaller curvature at lower IM values (here curvature refers to the second derivative 

of the curve in log-log space).  In this case, it was selected to perform the regression on the  

data corresponding to the higher values of IM.  This was selected because larger IM values 

will likely cause more structural damage and therefore have more engineering significance. 

Hence, for the Dunedin hazard data the first three data points were removed from the least-

squares regression.  The values of the three parameters for each of the PGA seismic hazard 

curves in Figure 3 and the associated standard deviations from the regression analyses are 

presented in Table 1. 
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As with any curve fitting of data, the primary limitation of the parametric curve given 

by Equation 4 is its use in extrapolation.  Asymptotes on the maximum rate of exceedance and 

ground-motion intensity are requirements based on physical principles.  The parametric 

relationship proposed has both horizontal and vertical asymptotes.  However, because the 

parameters of the relationship are determined based on the data points within a specific range, 

the values of the asymptotes may not be consistent with those of different regions.  Overall the 

range of hazard up to return periods of one million years (v = 1x10-6) would be considered as 

sufficient to use for the assessment (in particular, calculating EAL which requires integration 

over the full range of IM), and therefore in the opinion of the authors no extrapolation of the 

parametric curve is required to obtain suitably accurate results when conducting performance-

based assessments. 

APPLICATION TO PROBABILISTIC SEISMIC DEMAND ANALYSIS 

In the following two sections the propagation of the effects of the seismic hazard curve 

is investigated through probabilistic seismic demand analysis (PSDA) by computing the drift 

hazard curve for a typical bridge pier designed to New Zealand standards [16]. 

Bridge details 

The prototype bridge pier is 7m high and taken from a typical ‘long’ multi-span 

highway bridge on firm soil with 40m longitudinal spans and a 10m transverse width.  The 

seismic weight of the superstructure was calculated to be 7000 kN.  The bridge was assumed 

to be located in Wellington, New Zealand, The fundamental period of the pier was 0.6 

seconds.  A computational model of the bridge pier was constructed using the nonlinear finite 

element program Ruaumoko [17].  The pier was modeled as a Single-Degree of Freedom 

(SDF), with a modified Takeda hysteresis model [18] for the force-displacement response of 

the pier column, and 5% viscous damping was assumed.  The computation model was 
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calibrated based on experimental results [19]. 

Further design details and experimental modelling of the pier can be found elsewhere 

[19,20]. 

Site seismic hazard 

Seismic hazard data for the site was obtained from Stirling et al. [15].  The IM selected 

was the elastic spectral acceleration at the fundamental period of the structure, as it typically 

gives rise to a low dispersion (‘efficiency’) in the structural demand-response (IM-EDP) 

relationship, and is generally independent of magnitude and source-distance for carefully 

selected ground-motion records (‘sufficiency’) [7,21,22].  From the hazard data, both power 

law (Equation (1)) and hyperbolic (Equation (4)) parametric equations were fitted to the data, 

as shown in Figure 4a. 

Structural response analysis 

Due to the lack of large earthquakes in the Wellington region over the past 100 years, 

despite its known high seismicity, there are insufficient regional ground-motion records to 

carry out a performance-based assessment.  Therefore a suite of ground-motion records, 

previously used by Vamvatsikos and Cornell [23] were adopted, and are presented in Table 2.  

These records, which were all recorded on firm soil, have magnitude and distance ranges of 

6.5-6.9 and 15.1-31.7 km, respectively. 

Using the computational model of the bridge pier, Incremental Dynamic Analysis (IDA) 

[24] was conducted to generate the data to characterise the conditional IM-EDP relationship.  

The IDA was carried out using the elastic spectral acceleration at the fundamental period of 

vibration as the intensity measure (IM), and the maximum deck drift as the engineering 

demand parameter (EDP).  The resulting IDA data from the structural analyses is presented in 

Figure 4b.  The conditional IM-EDP relationship was then parameterized using Equation (8) 

developed by Shome and Cornell [25], which is based on separating the mutually exclusive 
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and collectively exhaustive cases of structural collapse and non-collapse, and a power law 

expression to describe the IM-EDP relation given collapse does not occur. 

  )()(1),()( IMCPIMCPNCIMedpEDPPIMedpEDPP   (8) 

where P(C) = the probability of collapse; and P(EDP>edp|IM,NC) is calculated by assuming 

EDP given IM (EDP|IM) is lognormally distributed  with logarithmic mean given by Equation 

(9), and lognormal standard deviation (dispersion) βlnEDP|IM. 

   IMbaIMEDP ln.ln|ln   (9) 

where a and b are empirical constants determined by regression on the IDA data. 

The 16th, 50th and 84th percentile curves (16th and 84th percentiles are one standard 

deviation from the median) are shown on Figure 4b.  The bridge was deemed to collapse at a 

drift of 4% due to significant P-Δ effects from the superstructure.  The aleatoric uncertainty, 

βlnEDP|IM , in the EDP for a given IM was modeled using a hyperbolic tangent function, while 

the variation of the collapse probability with IM was assumed to follow a lognormal 

distribution [21].  A comparison of the parametric fits for dispersion and collapse probability 

and the raw data points are presented elsewhere [26]. 

Displacement hazard 

Using both the seismic hazard and IDA parametric curves the displacement hazard of 

the pier can be obtained using the convolution integral presented by Deierlein et al. [27]: 

  )()|()( IMdIMedpEDPPedpEDP   (10) 

where the integration is over a range of IM values which have significant influence on the 

solution. 

Equation (10) is then computed using numerical integration, the results of which are 

presented in Figure 5.  It can be seen that in the immediate region surrounding the DBE and 

MCE levels the drift hazard curves given by the hyperbolic model and the power law model 

are similar.  This is as to be expected considering the power law curve is fitted through the 
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DBE and MCE data points.  However, as expected the power law relationship significantly 

over-predicts the drift hazard in the region of v > v(DBE).  While the power law relationship 

also over-predicts the EDP for more intense ground-motions (v < 5x10-4), it is not as 

significant as would be expected based on the shape of the seismic hazard curves.  The reason 

for this can be attributed to the fact that for these more intense ground-motions, the EDP 

exceeds the drift representing structural collapse, which is illustrated by the ‘flattening’ of the 

drift hazard curves around v ~ 2x10-4.  Therefore, it can be said that the extent of over-

prediction of the power law relationship in the region of large ground-motion intensities is 

dependent on the seismic capacity of the structure. 

A SEMI-ANALYTICAL CLOSED-FORM SOLUTION FOR ANNUAL 

FREQUENCY OF DEMAND 

The attractiveness of the power law model is that it can be used to obtain a closed form 

solution for the frequency of exceedance of demand (herein referred to as drift hazard) for a 

given structure at the site of interest.  The mathematical form of the hyperbolic model does 

not directly permit such a solution.  However, by inspection and appropriate modification of 

the closed form solution utilizing the power law hazard model, it is possible to obtain a semi-

analytical solution for the drift hazard using the proposed hyperbolic model.  Details of this 

semi-analytical solution are presented in this section.  Note that unlike Figure 5 in the 

previous section (which uses Equations (8)-(10)), the closed form solution discussed in this 

section does not consider the onset of structural collapse.  The potential incorporation of 

structural collapse is addressed in the discussion. 

Mathematical details 

It has been shown [4-8] that by using power law relationships for the median seismic 

hazard (Equation (1)) and structural response (Equation (9)) relationships, and assuming the 
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IM-EDP relationship is lognormally distributed with constant dispersion (βEDP|IM), a closed 

form solution for the demand hazard can be obtained, as given by Equation (11): 
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where exp(●) is the exponential function.  Jalayer [8] then suggested simplifying the 

presentation of Equation (11) by introducing the idea of the “im that corresponds to edp” 

defined as: 
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Equation (12) is also the solution of Equation (9) for a given edp value.  This can be 

interpreted as the IM value corresponding to the EDP, from the median IM-EDP relationship.  

This then allows Equation (11) to be expressed as follows: 
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Hence, from the right hand side of Equation (13), the demand hazard can be viewed as the 

value obtained from the median seismic hazard (Equation (1)) and median demand (Equation 

(9)) relations and an exponential term, which represents the increase in the hazard due to 

uncertainty.  In particular the exponential term is a function of k. 

Firstly, the ‘median demand hazard’ (defined as ν(IMedp) in Equation 13) for a given 

EDP value, can be determined by using the hyperbolic model by computing IMedp from 

Equation (12) and then using Equation 4a with IM = IMedp. 

Secondly, it should be noted that geometrically k is simply a local approximation of the 

gradient of the seismic hazard curve in log-log space.  The only difference between the power 

law and hyperbolic hazard models in this regard is that k is constant for the power law model, 

but not for the hyperbolic model.  Hence, by differentiating Equation (3) with respect to 

ln(IM), the equivalent local gradient of the hyperbolic model is given by: 
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where keq = equivalent local gradient of the seismic hazard curve in log-log space, and the 

value of IM to be used is discussed below. 

It would seem intuitive that the IM value to be used (in Equation 14) would be IMedp.  

Figure 6 presents the values of the drift hazard curve obtained using IM = IMedp to compute keq 

in Equation (14), compared to the computed ‘median demand hazard’ (ν(IMedp)), and the 

‘exact demand hazard’ (which is obtained by direct numerical integration of Equation (10)).  

It is immediately obvious that the exponential term (the factor in Equation 13 giving rise to 

the difference between the median demand hazard curve and the exact demand hazard) is too 

large.  This occurs because for a given value of EDP, the median ground-motion hazard value 

is always smaller than the exact ground motion hazard value.  From Figure 3 it can be seen 

that the slope of the hyperbolic hazard curve increases (in absolute terms) as ν(IM>im) 

decreases.  Therefore using IM = IMedp gives an unreasonably large keq, which is further 

amplified within the exponential term.  Use of the mean (as opposed to median) demand curve 

does not resolve this problem.  Therefore keq should be obtained using Equation 4b as before, 

but should be the IM corresponding to the ‘exact demand hazard’ value, as opposed to the 

‘median demand hazard’ value.  As the ‘exact demand hazard’ value is not actually known, 

implementing the equation in this form requires an iterative process. 

This problem of what slope, keq (or k), to use to compute v(EDP) is not just a problem 

with using the hyperbolic model (Equation (4)), but is also a problem when using the closed-

form solution for the power law model (Equation (13)).  This problem can be resolved if the 

closed form solution is inverted, therefore becoming a function of ν.  Hence, the solution 

procedure is as follows: (i) for the selected rate of exceedance calculate the log-log slope, keq, 

of the hazard curve; and (ii) calculate the EDP using the selected rate of exceedance and keq.  
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Since both the approximation for the slope and the corresponding EDP are calculated based 

on the same rate of exceedance, then the solution should be more accurate, without requiring 

iteration. 

Inverting the closed form solution proposed by Luco and Cornell [2] (Equation (11)) 

gives the EDP for a given rate of exceedance, ν: 
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Calculation of EDP(ν) using the hyperbolic hazard model can be determined by starting 

with Equation (13), where  edpIMv  is given by substituting Equation (12) into Equation (4a).  

Then the log-log slope of the hazard curve, k, can be expressed as a function of v by 

substituting Equation (4b) into Equation (14).  Finally, this modified form of Equation (13) 

can be rearranged as a function of EDP to yield: 
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where V = ln(ν/νasy), and all other parameters have their usual meaning. 

Figure 7 illustrates the approximation of Equation (16) to the ‘exact’ solution obtained 

via numerical integration, compared with the closed form solution using the power law hazard 

model (Equation (15)).  It can be seen that the semi-analytical closed form solution displays 

far superior accuracy over a larger range of EDP, in comparison to the power law closed form 

solution.  The semi-analytical solution is not exactly the same as the numerical solution 

however.  The reason for this is that the convolution integral (e.g. Equation (10)) is dependent 

on the hazard at various intensity levels (i.e. the integration is over the full range of IM) and 

therefore at these different intensity levels the value of k varies.  The semi-analytical solution, 

however, uses only a constant k value corresponding to the rate considered.  For the bridge 
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pier case study drift hazard curves (Figure 7) this over prediction ranged from 5-10% with a 

mean value of 7%.  Even despite this inconsistency, the accuracy is sufficient considering the 

simplification of a closed form solution over numerical integration. 

DISCUSSION 

The previous sections have illustrated that probabilistic seismic demand analysis 

(PSDA) carried out analytically using the proposed hyperbolic model gives results which are 

significantly more accurate compared to those obtained using the closed form solution 

presented by others [4-8]. 

Note that the procedure to obtain the semi-analytical solution presented is not unique to 

the seismic hazard model used.  For example, the authors investigated the use of more 

classical probability distributions to model the hazard, such as the lognormal cumulative 

distribution function (CDF), i.e: 
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where erf = is the error function; and μ, σ are the logarithmic mean and standard deviation of 

the lognormal CDF.  The same procedure can be used to obtain the solution for EDP(ν).  The 

final form of EDP(ν) is significantly more complicated, and is given by: 
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where erfinv = the inverse error function.  Also, the ability of the lognormal distribution in 

approximating the hazard curve is somewhat limited (in certain cases) compared to the 

proposed hyperbolic model, in that it only has two parameters (mean and standard deviation) 

compared to the three for the hyperbolic model, making its fit of the hazard data less flexible. 
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As it has been shown that the ‘curvature’ of the hazard model can now be incorporated 

into the closed form solution, the only limitation of Equation 16 (or Equation 18 for that 

matter), is that the demand model parametric equation (Equation 9) does not typically model 

the response in the region of global collapse well [3].  Shome and Cornell [21] showed that by 

using a power law function to describe the probability of collapse, a closed form solution 

could be obtained which considers collapse in the demand model.  The (simple) inclusion of 

collapse using the proposed hyperbolic model (or lognormal model) could be the subject of 

further work. 

CONCLUSIONS 

Based on the findings of this research the following conclusions can be drawn: 

1. A novel hazard model has been developed which is non-linear in log-log space.  

The model is typically fitted to seismic hazard data via least squares regression, and 

it allows for the incorporation of epistemic uncertainty in the hazard. 

2. The applicability of the model to seismic hazard data in New Zealand has been 

illustrated for both PGA and spectral acceleration and results for PGA have been 

tabulated. 

3. Via a performance-based assessment of a bridge pier designed to New Zealand 

standards, it has been illustrated that the power law model for the seismic hazard 

significantly over-estimates the demand hazard if used over a wide range of EDP, 

and the proposed hyperbolic seismic hazard model has proved to be a much more 

reliable option. 

4. A semi-analytical solution procedure to calculate the drift hazard in closed-form 

has been proposed.  The procedure, while not exact, had an mean relative over-
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prediction of 7% for the given example.  The proposed procedure is therefore a 

viable alternative compared to the closed-form solution utilizing the power law 

hazard model. 
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Table 1: Hazard curve parameters for various regions to be used in Equation 4 for PGA 

Region vasy IMasy α βF 

Auckland 98450 126 121.6 0.12 
Wellington 6617 81.7 75.9 0.20 
Christchurch 1221 29.8 62.2 0.06 
Otira 9.95 10.5 20.5 0.14 
Dunedin 1.8 10.3 26.3 0.13 
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Table 2:  Ground motion records used in seismic response analysis 

No Event Year Station  M*2 
R*3 
(km)

PGA 
(g) 

1 Loma Prieta 1989 Agnews State Hospital 90 6.9 28.2 0.159
2 Imperial Valley 1979 Plaster City 135 6.5 31.7 0.057
3 Loma Prieta 1989 Hollister Diff. Array 255 6.9 25.8 0.279
4 Loma Prieta 1989 Anderson Dam 270 6.9 21.4 0.244
5 Loma Prieta 1989 Coyote Lake Dam 285 6.5 22.3 0.179
6 Imperial Valley 1979 Cucapah 85 6.9 23.6 0.309
7 Loma Prieta 1989 Sunnyvale Colton Ave 270 6.9 28.8 0.207
8 Imperial Valley 1979 El Centro Array #13 140 6.5 21.9 0.117
9 Imperial Valley 1979 Westmoreland Fire Sta. 90 6.5 15.1 0.074
10 Loma Prieta 1989 Hollister South & Pine 0 6.9 28.8 0.371
11 Loma Prieta 1989 Sunnyvale Colton Ave 360 6.9 28.8 0.209
12 Superstition Hills 1987 Wildlife Liquefaction Array 90 6.7 24.4 0.180
13 Imperial Valley 1979 Chihuahua 282 6.5 28.7 0.254
14 Imperial Valley 1979 El Centro Array #13 230 6.5 21.9 0.139
15 Imperial Valley 1979 Westmoreland Fire Sta. 180 6.5 15.1 0.110
16 Loma Prieta 1989 WAHO 0 6.9 16.9 0.370
17 Superstition Hills 1987 Wildlife Liquefaction Array 360 6.7 24.4 0.200
18 Imperial Valley 1979 Plaster City 45 6.5 31.7 0.042
19 Loma Prieta 1989 Hollister Diff. Array 165 6.9 25.8 0.269
20 Loma Prieta 1989 WAHO 90 6.9 16.9 0.638

             1 Component 
             2 Moment Magnitudes 
             3 Closest Distances to Fault Rupture 
        Source: PEER Strong Motion Database, http://peer.berkeley.edu/smcat/ 
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Figure 1. Comparison on hazard data from PSHA fitted by Equation (1). 
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Figure 2. Concept of hyperbolic curve fitted to hazard data. 
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Figure 3. Fitted seismic hazard PGA and Sa data for New Zealand: (a) seismic 
hazard data for PGA fitted using Equations (4a) and (4b) and (b) seismic hazard 
data for Sa(T =1.5 s) fitted using Equations (4a) and (4b). 
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Figure 4. (a) Hazard model and (b) IDA demand model curves. 
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Figure 5. Drift hazard curves. 
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Figure 6. Semi-analytic closed-form solution using IM=IMedp. 
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Figure 7. Semi-analytic closed-form solution: (a) in ln(IM)–ln(v) space and (b) in 
IM–ln(v) space. 

 


