76 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Large Capacity Missile Carrier (CMX)

    Get PDF
    A systems engineering approach to the development of a radically different kind of surface combatant ship is presented, followed by a preliminary design of the ship shown by the analysis to be most effective. The requirement for the project was the development of a ship which would provide a major increase in the missile firepower of a battlegroup. The study conducts an analysis of four warfare scenarios and evaluates the effectiveness of replacing some Aegis ships with the missile carrier (CMX) and examines the relative utility of varying missile loads for the CMX. An alternative is chosen for further development and is designed to the preliminary design level. Data and drawings are included.Naval Sea Systems Command, Ship Design & System Engineering Grouphttp://archive.org/details/largecapacitymis00calvNaval Sea Systems Command, Ship Design & System Engineering GroupApproved for public release; distribution is unlimited

    Successful use of incremental BMC in the automotive industry

    No full text
    Program analysis is on the brink of mainstream usage in embedded systems development. Formal verification of behavioural requirements, finding runtime errors and automated test case generation are some of the most common applications of automated verification tools based on Bounded Model Checking (BMC). Existing industrial tools for embedded software use an off-the-shelf Bounded Model Checker and apply it iteratively to verify the program with an increasing number of unwindings. This approach unnecessarily wastes time repeating work that has already been done and fails to exploit the power of incremental SAT solving. This paper reports on the extension of the software model checker Cbmc to support incremental BMC and its successful integration with the industrial embedded software verification tool BTC EmbeddedTester. We present an extensive evaluation over large industrial embedded programs, mainly from automotive industry. We show that incremental BMC cuts runtimes by one order of magnitude in comparison to the standard non-incremental approach, enabling the application of formal verification to large and complex embedded software

    Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada from 2012 to 2015

    Get PDF
    Annual decreases in corn yield caused by diseases were estimated by surveying members of the Corn Disease Working Group in 22 corn-producing states in the United States and in Ontario, Canada, from 2012 through 2015. Estimated loss from each disease varied greatly by state and year. In general, foliar diseases such as northern corn leaf blight, gray leaf spot, and Goss’s wilt commonly caused the largest estimated yield loss in the northern United States and Ontario during nondrought years. Fusarium stalk rot and plant-parasitic nematodes caused the most estimated loss in the southern-most United States. The estimated mean economic loss due to yield loss by corn diseases in the United States and Ontario from 2012 to 2015 was $76.51 USD per acre. The cost of disease-mitigating strategies is another potential source of profit loss. Results from this survey will provide scientists, breeders, government, and educators with data to help inform and prioritize research, policy, and educational efforts in corn pathology and disease management
    corecore