441 research outputs found

    Information Flow and Expected Inflation: An Empirical Analysis

    Get PDF
    This paper begins by ranking the absolute value of changes in the 10-year break- even inflation (BEI) calculated using 10-year Treasury notes and 10-year TIPS. Next, a news search is conducted to determine what inflation related information was released on days when the change in the BEI was greatest. The goal of the analysis is not only to see what information is associated with large changes in the BEI, but also to gain insight into the extent to which market participants accept the three competing theories of price determination: the classic monetary theory, the fiscal theory, and a “Keynesian” model that combines central bank setting of interest rates with the Philips curve. I find that there was no mention of the money supply, the demand for money, or the rate of monetary growth on any of the days on which there was a large change in the BEI. Further, I find that there was only one mention of the impact of government debt on a day where the BEI changed substantially. In comparison, there were 53 news items on large change days that either explicitly discussed Federal Reserve policy regarding interest rates or focused on the interaction between Fed policy, economic activity and expected inflation. This suggests that market participants accept the “Keynesian” model of price determination

    A Delegated Agent Asset-Pricing Model

    Get PDF

    Why have asset price properties changed so little in 200 years

    Full text link
    We first review empirical evidence that asset prices have had episodes of large fluctuations and been inefficient for at least 200 years. We briefly review recent theoretical results as well as the neurological basis of trend following and finally argue that these asset price properties can be attributed to two fundamental mechanisms that have not changed for many centuries: an innate preference for trend following and the collective tendency to exploit as much as possible detectable price arbitrage, which leads to destabilizing feedback loops.Comment: 16 pages, 4 figure

    The importance of species identity and interactions on multifunctionality depends on how ecosystem functions are valued

    Get PDF
    Studies investigating how biodiversity affects ecosystem functioning increasingly focus on multiple functions measured simultaneously ("multifunctionality"). However, few such studies assess the role of species interactions, particularly under alternative environmental scenarios, despite interactions being key to ecosystem functioning. Here we address five questions of central importance to ecosystem multifunctionality using a terrestrial animal system. (1) Does the contribution of individual species differ for different ecosystem functions? (2) Do inter-species interactions affect the delivery of single functions and multiple functions? (3) Does the community composition that maximizes individual functions also maximize multifunctionality? (4) Is the functional role of individual species, and the effect of interspecific interactions, modified by changing environmental conditions? (5) How do these roles and interactions change under varying scenarios where ecosystem services are weighted to reflect different societal preferences? We manipulated species' relative abundance in dung beetle communities and measured 16 functions contributing to dung decomposition, plant productivity, nutrient recycling, reduction of greenhouse gases, and microbial activity. Using the multivariate diversity-interactions framework, we assessed how changes in species identity, composition, and interspecific interactions affected these functions in combination with an environmental driver (increased precipitation). This allowed us to identify key species and interactions across multiple functions. We then developed a desirability function approach to examine how individual species and species mixtures contribute to a desired state of overall ecosystem functioning. Species contributed unequally to individual functions, and to multifunctionality, and individual functions were maximized by different community compositions. Moreover, the species and interactions important for maintaining overall multifunctionality depended on the weight given to individual functions. Optimal multifunctionality was context-dependent, and sensitive to the valuation of services. This combination of methodological approaches allowed us to resolve the interactions and indirect effects among species that drive ecosystem functioning, revealing how multiple aspects of biodiversity can simultaneously drive ecosystem functioning. Our results highlight the importance of a multifunctionality perspective for a complete assessment of species' functional contributions

    SNi from SN2: a front-face mechanism ‘synthase’ engineered from a retaining hydrolase

    Get PDF
    SNi or SNi-like mechanisms, in which leaving group departure and nucleophile approach occur on the same ‘front’ face, have been observed previously experimentally and computationally in both the chemical and enzymatic (glycosyltransferase) substitution reactions of α-glycosyl electrophiles. Given the availability of often energetically comparable competing pathways for substitution (SNi vs SN1 vs SN2) the precise modulation of this archetypal reaction type should be feasible. Here, we show that the drastic engineering of a protein that catalyzes substitution, a retaining β-glycosidase (from Sulfolobus solfataricus SSβG), apparently changes the mode of reaction from “SN2” to “SNi”. Destruction of the nucleophilic Glu387 of SSβG-WT through Glu387Tyr mutation (E387Y) created a catalyst (SSβG-E387Y) with lowered but clear transglycosylation substitution activity with activated substrates, altered substrate and reaction preferences and hence useful synthetic (‘synthase’) utility by virtue of its low hydrolytic activity with unactivated substrates. Strikingly, the catalyst still displayed retaining β stereoselectivity, despite lacking a suitable nucleophile; pH-activity profile, mechanism-based inactivators and mutational analyses suggest that SSβG-E387Y operates without either the use of nucleophile or general acid/base residues, consistent with a SNi or SNi-like mechanism. An x-ray structure of SSβG-E387Y and subsequent metadynamics simulation suggest recruitment of substrates aided by a π-sugar interaction with the introduced Tyr387 and reveal a QM/MM free energy landscape for the substitution reaction catalyzed by this unnatural enzyme similar to those of known natural, SNi-like glycosyltransferase (GT) enzymes. Proton flight from the putative hydroxyl nucleophile to the developing p-nitrophenoxide leaving group of the substituted molecule in the reactant complex creates a hydrogen bond that appears to crucially facilitate the mechanism, mimicking the natural mechanism of SNi-GTs. An oxocarbenium ion-pair minimum along the reaction pathway suggests a step-wise SNi-like DN*ANss rather than a concerted SNi DNAN mechanism. This first observation of a front face mechanism in a β-retaining glycosyl transfer enzyme highlights, not only that unusual SNi reaction pathways may be accessed through direct engineering of catalysts with suitable environments, but also suggests that ‘β-SNi’ reactions are also feasible for glycosyl transfer enzymes and the more widespread existence of SNi or SNi-like mechanism in nature

    Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches

    Full text link
    The following article appeared in Applied Physics Letters 103.16 (2013): 164105 and may be found at http://scitation.aip.org/content/aip/journal/apl/100/26/10.1063/1.4729825The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two 210 Pb sources producing ∼130 beta decays/hr. In ∼800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10−5 at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.This work is supported in part by the National Science Foundation (Grant Nos. AST-9978911, NSF-0847342, PHY-1102795,NSF-1151869, PHY-0542066, PHY-0503729, PHY-0503629, PHY-0503641, PHY-0504224, PHY-0705052,PHY-0801708, PHY-0801712, PHY-0802575, PHY-0847342, PHY-0855299, PHY-0855525, and PHY-1205898), by the Department of Energy (Contract Nos. DE-AC03-76SF00098, DE-FG02-92ER40701, DE-FG02-94ER40823,DE-FG03-90ER40569, DE-FG03-91ER40618, and DESC0004022),by NSERC Canada (Grant Nos. SAPIN 341314 and SAPPJ 386399), and by MULTIDARK CSD2009-00064 and FPA2012-34694. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359, while SLAC is operated under Contract No. DE-AC02-76SF00515 with the United States Department of Energy
    corecore