14 research outputs found

    Using acoustic indices in ecology : guidance on study design, analyses and interpretation

    Get PDF
    TBL was supported by Leverhulme Trust, research grant number RPG-2020-160; the Lorentz Centre, Leiden, The Netherlands; and UKAN+. AE and OM were supported by UKAN+.The rise of passive acoustic monitoring and the rapid growth in large audio datasets is driving the development of analysis methods that allow ecological inferences to be drawn from acoustic data. Acoustic indices are currently one of the most widely applied tools in ecoacoustics. These numerical summaries of the sound energy contained in digital audio recordings are relatively straightforward and fast to calculate but can be challenging to interpret. Misapplication and misinterpretation have produced conflicting results and led some to question their value. To encourage better use of acoustic indices, we provide nine points of guidance to support good study design, analysis and interpretation. We offer practical recommendations for the use of acoustic indices in the study of both whole soundscapes and individual taxa and species, and point to emerging trends in ecoacoustic analysis. In particular, we highlight the critical importance of understanding the links between soundscape patterns and acoustic indices. Acoustic indices can offer insights into the state of organisms, populations, and ecosystems, complementing other ecological research techniques. Judicious selection, appropriate application and thorough interpretation of existing indices is vital to bolster robust developments in ecoacoustics for biodiversity monitoring, conservation and future research.Publisher PDFPeer reviewe

    Spatially targeted nature-based solutions can mitigate climate change and nature loss but require a systems approach

    Get PDF
    Funding Information: This study was funded by the Royal Society for the Protection of Birds (RSPB) and Natural England (project code ECM 58632). The Breeding Bird Survey is a Partnership between the BTO, RSPB, and Joint Nature Conservation Committee (on behalf of Natural Resources Wales, Natural England, Council for Nature Conservation and Countryside, and NatureScot) and relies on volunteer surveyors. Simon Gillings provided tetrad-level predictions of relative abundance for wading birds. We are grateful to members of the RSPB steering group, who contributed to the development of our scenarios, and Profs. Tim Benton and Andrew Balmford who commented on an earlier version of this manuscript. Conceptualization, T.F. R.B.B. T.B.-L. G.M.B. W.J.P. and R.H.F.; methodology, T.F. T.B.-L. J.P.C. D.M. P.S. and R.H.F.; software, T.F.; formal analysis, T.F.; resources, D.M.; data curation, T.F.; writing – original draft, T.F.; writing – review & editing, R.B.B. T.B.-L. G.M.B. J.P.C. D.M. P.S. W.J.P. and R.H.F.; visualization, T.F.; supervision, W.J.P. The authors declare no competing interests. Publisher Copyright: © 2023 The AuthorsPeer reviewedPublisher PD

    Listening to tropical forest soils

    Get PDF
    Acoustic monitoring has proven to be an effective tool for monitoring biotic soundscapes in the marine, terrestrial, and aquatic realms. Recently it has been suggested that it could also be an effective method for monitoring soil soundscapes, but has been used in very few studies, primarily in temperate and polar regions. We present the first study of soil soundscapes using passive acoustic monitoring in tropical forests, using a novel analytical pipeline allowing for the use of in-situ recording of soundscapes with minimal soil disturbance. We found significant differences in acoustic index values between burnt and unburnt forests and the first indications of a diel cycle in soil soundscapes. These promising results and methodological advances highlight the potential of passive acoustic monitoring for large-scale and long-term monitoring of soil biodiversity. We use the results to discuss research priorities, including relating soil biophony to community structure and ecosystem function, and the use of appropriate hardware and analytical techniques

    Measuring the intensity of conflicts in conservation

    Get PDF
    Conflicts between the interests of biodiversity conservation and other human activities pose a major threat to natural ecosystems and human well‐being, yet few methods exist to quantify their intensity and model their dynamics. We develop a categorization of conflict intensity based on the curve of conflict, a model originally used to track the escalation and deescalation of armed conflicts. Our categorization assigns six intensity levels reflecting the discourse and actions of stakeholders involved in a given conflict, from coexistence or collaboration to physical violence. Using a range of case studies, we demonstrate the value of our approach in quantifying conflict trends, estimating transition probabilities between conflict stages, and modeling conflict intensity as a function of relevant covariates. By taking an evidence‐based approach to quantifying stakeholder behavior, the proposed framework allows for a better understanding of the drivers of conservation conflict development across a diverse range of socioecological scenarios

    Modeling the potential distribution of the threatened Grey-necked Picathartes Picathartes oreas across its entire range

    Get PDF
    Understanding the distribution and extent of suitable habitats is critical for the conservation of endangered and endemic taxa. Such knowledge is limited for many Central African species, including the rare and globally threatened Grey-necked Picathartes Picathartes oreas, one of only two species in the family Picathartidae endemic to the forests of Central Africa. Despite growing concerns about land-use change resulting in fragmentation and loss of forest cover in the region, neither the extent of suitable habitat nor the potential species’ distribution is well known. We combine 339 (new and historical) occurrence records of Grey-necked Picathartes with environmental variables to model the potential global distribution. We used a Maximum Entropy modelling approach that accounted for sampling bias. Our model suggests that Grey-necked Picathartes distribution is strongly associated with steeper slopes and high levels of forest cover, while bioclimatic, vegetation health, and habitat condition variables were all excluded from the final model. We predicted 17,327 km2 of suitable habitat for the species, of which only 2,490 km2 (14.4%) are within protected areas where conservation designations are strictly enforced. These findings show a smaller global distribution of predicted suitable habitat forthe Grey-necked Picathartes than previously thought. This work provides evidence to inform a revision of the International Union for Conservation of Nature (IUCN) Red List status, and may warrant upgrading the status of the species from “Near Threatened” to “Vulnerable”

    Good practice guidelines for long-term ecoacoustic monitoring in the UK: with a particular focus on terrestrial biodiversity at the human-audible frequency range

    Get PDF
    Passive acoustic monitoring has great potential as a cost-effective method for long-term biodiversity monitoring. However, to maximise its efficacy, standardisation of survey protocols is necessary to ensure data are comparable and permit reliable inferences. The aim of these guidelines is to outline a basic long-term acoustic monitoring protocol that can be adapted to suit a range of projects according to specific objectives and size

    AVONET: morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.Additional co-authors: Samuel E. I. Jones, Claire Vincent, Anna G. Phillips, Nicola M. Marples, Flavia A. Montaño-Centellas, Victor Leandro-Silva, Santiago Claramunt, Bianca Darski, Benjamin G. Freeman, Tom P. Bregman, Christopher R. Cooney, Emma C. Hughes, Elliot J. R. Capp, Zoë K. Varley, Nicholas R. Friedman, Heiko Korntheuer, Andrea Corrales-Vargas, Christopher H. Trisos, Brian C. Weeks, Dagmar M. Hanz, Till Töpfer, Gustavo A. Bravo, Vladimír Remeƥ, Larissa Nowak, Lincoln S. Carneiro, Amilkar J. Moncada R., Beata Matysiokovå, Daniel T. Baldassarre, Alejandra Martínez-Salinas, Jared D. Wolfe, Philip M. Chapman, Benjamin G. Daly, Marjorie C. Sorensen, Alexander Neu, Michael A. Ford, Luis Fabio Silveira, David J. Kelly, Nathaniel N. D. Annorbah, Henry S. Pollock, Ada M. Grabowska-Zhang, Jay P. McEntee, Juan Carlos T. Gonzalez, Camila G. Meneses, Marcia C. Muñoz, Luke L. Powell, Gabriel A. Jamie, Thomas J. Matthews, Oscar Johnson, Guilherme R. R. Brito, Kristof Zyskowski, Ross Crates, Michael G. Harvey, Maura Jurado Zevallos, Peter A. Hosner, James M. Maley, F. Gary Stiles, Hevana S. Lima, Kaiya L. Provost, Moses Chibesa, Mmatjie Mashao, Jeffrey T. Howard, Edson Mlamba, Marcus A. H. Chua, Bicheng Li, M. Isabel Gómez, Natalia C. García, Martin PÀckert, JérÎme Fuchs, Jarome R. Ali, Elizabeth P. Derryberry, Monica L. Carlson, Rolly C. Urriza, Kristin E. Brzeski, Dewi M. Prawiradilaga, Matt J. Rayner, Eliot T. Miller, Rauri C. K. Bowie, René-Marie Lafontaine, R. Paul Scofield, Yingqiang Lou, Lankani Somarathna, Denis Lepage, Marshall Illif, Eike Lena Neuschulz, Mathias Templin, D. Matthias Dehling, Jacob C. Cooper, Olivier S. G. Pauwels, Kangkuso Analuddin, Jon FjeldsÄ, Nathalie Seddon, Paul R. Sweet, Fabrice A. J. DeClerck, Luciano N. Naka, Jeffrey D. Brawn, Alexandre Aleixo, Katrin Böhning-Gaese, Carsten Rahbek, Susanne A. Fritz, Gavin H. Thomas, Matthias Schleunin

    Rapid assessment of avian species richness and abundance using acoustic indices

    Get PDF
    Accelerating global shifts in climate and land use change are altering natural habitats and species assemblages, making management interventions crucial to halt the biodiversity crisis. Management decisions must be informed by accurate biodiversity assessments. However, such assessments are often time consuming, expensive, and require specialist knowledge. Monitoring environmental sound may offer a novel method for rapid biodiversity assessment. Changes in species assemblages at a given location are reflected in the site’s acoustic energy, termed the soundscape. Soundscapes can be readily described using acoustic indices; metrics based on objective features of recordings such as pitch and amplitude. Changes in acoustic indices values may therefore reflect changes in species assemblages, alerting land managers to shifts in wildlife populations. However, thus far, evidence supporting the use of acoustic indices in biodiversity monitoring has been equivocal. Here, we test the practical application of acoustic indices for biodiversity monitoring while solving methodological issues and providing conceptual clarity. Using 84 h of audio recordings covering 315 dawns from 43 sites, coupled with bird assemblage and vegetation data collected in the field, we demonstrate strong relationships between acoustic indices and avian species richness and abundance. In contrast with many previous studies, we found that sites with high bird species-richness and abundance had less even soundscapes (i.e. acoustic energy was less evenly distributed among frequencies) compared with sites with low species richness and abundance. Crucially, these patterns were coherent across multiple acoustic indices, and across habitat types, emphasising their utility for monitoring. Acoustic indices sensitive to the frequencies at which birds sing are most useful for monitoring avian communities; the Acoustic Evenness Index, Biophony Index, and the biophony component of the Normalised Difference Soundscape Index exhibited the strongest relationship with species richness. Land managers can use acoustic indices for biodiversity monitoring, complementing other, more established, assessment methods

    Guidelines for the use of acoustic indices in environmental research

    Get PDF
    1. Ecoacoustics, the study of environmental sound, is a growing field with great potential for biodiversity monitoring. Audio recordings could provide a rapid, cost‐effective monitoring tool offering novel insights into ecosystem dynamics. More than 60 acoustic indices have been developed to date, which reflect distinct attributes of the soundscape, (i.e. the total acoustic energy at a given location, including noise produced by animals, machinery, wind and rain). However, reported patterns in acoustic indices have been contradictory, possibly because there is no accepted best practice for the collection and analysis of audio recordings. 2. Here, we propose: (a) guidelines for designing studies using audio recordings for the rapid assessment of multiple sites; and (b) a workflow for comparing recordings with seven of the most commonly used indices, permitting discrimination among habitat‐specific soundscapes. We collected and analysed over 26,000 hr of recordings from 117 sites across a range of habitats in a human‐modified tropical landscape in central Panama; an order of magnitude more recordings than used in previously published studies. 3. We demonstrate that: (a) Standard error variance of indices stabilizes within 120 hr of recordings from a single location. (b) Continuous recording should be used rather than subsample recording on a schedule; sub sampling is a common practice but delays capture of site variability and maximizing total duration of recording should be prioritized. (c) Use of multiple indices to describe soundscape patterns reveals distinct diel and seasonal soundscape patterns among habitats. 4. We advocate collecting at least 120 hr of continuous recordings per site, and using a range of acoustic indices to categorize the soundscape, including the Acoustic Complexity Index, Acoustic Evenness Index, Acoustic Entropy Index and the Normalized Difference Soundscape Index. Differences among habitat types can be captured if multiple indices are used, and magnitude of variance is often more important than mean values. The workflow we provide will enable successful use of ecoacoustic techniques for environmental monitoring
    corecore