85 research outputs found

    FLT3-regulated antigens as targets for leukemia-reactive cytotoxic T lymphocytes

    Get PDF
    The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in acute myeloid leukemia (AML). Internal tandem duplications (ITD) of the juxtamembrane domain lead to the constitutive activation of the FLT3 kinase inducing the activation of multiple genes, which may result in the expression of leukemia-associated antigens (LAAs). We analyzed the regulation of LAA in FLT3-wild-type (WT)- and FLT3-ITD+ myeloid cells to identify potential targets for antigen-specific immunotherapy for AML patients. Antigens, such as PR-3, RHAMM, Survivin, WT-1 and PRAME, were upregulated by constitutively active FLT3-ITD as well as FLT3-WT activated by FLT3 ligand (FL). Cytotoxic T-cell (CTL) clones against PR-3, RHAMM, Survivin and an AML-directed CTL clone recognized AML cell lines and primary AML blasts expressing FLT3-ITD, as well as FLT3-WT+ myeloid dendritic cells in the presence of FL. Downregulation of FLT3 led to the abolishment of CTL recognition. Comparing our findings concerning LAA upregulation by the FLT3 kinase with those already made for the Bcr-Abl kinase, we found analogies in the LAA expression pattern. Antigens upregulated by both FLT3 and Bcr-Abl may be promising targets for the development of immunotherapeutical approaches against myeloid leukemia of different origin

    Mutants in the Mouse NuRD/Mi2 Component P66α Are Embryonic Lethal

    Get PDF
    The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66alpha and p66beta. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems.We made loss of function mutants in the mouse p66alpha gene (mp66alpha, official name Gatad2a, MGI:2384585). We found that mp66alpha is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66alpha in gene silencing.mp66alpha is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing

    RadioActive101-Learning through radio, learning for life: an international approach to the inclusion and non-formal learning of socially excluded young people

    Get PDF
    This article describes an original international approach to inclusion and non-formal learning of socially excluded young people, through participatory internet radio - RadioActive101. First, we critically discuss the social and digital exclusion of young people. We then describe our approach - that includes partic-ipatory action research methods that are influenced by the work of Dewey and Freire, and operate as a process of complex intervention. This supports the inclusive co-production of radio content in ways that support non-formal learning in two EU contexts – the UK and Portugal. We then summarise and compare a qualitative investigation of RadioActive101. This showed positive results, with important similarities and differences between the two contexts. Participants reported that RadioActive101 was motivating and contributed to the development of contemporary skills, and also stimulated improvements in psychosocial dimensions such as confidence (self-efficacy) and self-esteem. This investigation informed the development of an original recog-nition system for non-formal learning that maps EU Key Competences for Lifelong Learning to radio practic-es and activities that are recognised through electronic badges. Our final reflections emphasise that in order to support the non-formal learning of socially excluded young people we must foreground our attention to foster-ing psychosocial dimensions alongside developing contemporary competences

    The challenge and impact of engaging hard-to-reach populations in regular physical activity and health behaviours: an examination of an English Premier League ‘Football in the Community’ men's health programme

    Get PDF
    OBJECTIVES: To investigate the challenges that men from hard-to-reach (HTR) populations encounter when attempting to commit to regular participation in physical activity and health behaviours, and to explore the psychological and social effects of participation in a twelve week football-led health improvement intervention. STUDY DESIGN: A twelve week football specific physical activity intervention targeting men from HTR populations was delivered by Everton Football Clubs' Football in the Community (FitC) scheme as part of a national programme of men's health delivered in/by English Premier League (EPL) football clubs. Men living in homeless shelters and/or recovering from substance misuse were recruited over a period of three months. The programme consisted of a two hour football session, twice weekly, alongside the dissemination of healthy living messages. Football sessions were conducted by a qualified FitC coach. METHODS: This research was conducted during a twelve week period of immersed practitioner-research. Ethnographic and observational methodologies were adopted. Psychosocial issues were discussed with participants through informal client-researcher interactions and data were logged via field notes. Records of attendance were logged. Participants who failed to attend a session were contacted and their reason(s) for non-attendance were recorded. Data were analysed using deductive and inductive reasoning. RESULTS: Despite the apparent ambition of the participants to regularly participate in the FitC programme, adherence to the programme was poor. Economic, environmental and social barriers to engagement in the programme were apparent. Engagement in the programme resulted in positive psychosocial developments; the development of structure, social interaction and social capital. CONCLUSION: Community based football-led health improvement programmes endorsed by professional football clubs appear well positioned to connect with, and attract, men from HTR populations. The evidence suggests that such programmes can improve psychosocial health amongst these populations. However, a bottom-up programme design and management strategy is required in order to reduce the challenges facing HTR participants when attempting to regularly engage in physical activity and health behaviours

    Methylated BSA Mimics Amyloid-Related Proteins and Triggers Inflammation

    Get PDF
    The mechanistic study of inflammatory or autoimmune diseases requires the generation of mouse models that reproduce the alterations in immune responses observed in patients. Methylated bovine serum albumin (mBSA) has been widely used to induce antigen-specific inflammation in targeted organs or in combination with single stranded DNA (ssDNA) to generate anti-nucleic acids antibodies in vivo. However, the mechanism by which this modified protein triggers inflammation is poorly understood. By analyzing the biochemical properties of mBSA, we found that mBSA exhibits features of an intermediate of protein misfolding pathway. mBSA readily interact with a list of dyes that have binding specificity towards amyloid fibrils. Intriguingly, mBSA displayed cytotoxic activity and its binding to ssDNA further enhanced formation of beta-sheet rich amyloid fibrils. Moreover, mBSA is recognized by the serum amyloid P, a protein unanimously associated with amyloid plaques in vivo. In macrophages, we observed that mBSA disrupted the lysosomal compartment, signaled along the NLRP3 inflammasome pathway, and activated caspase 1, which led to the production of IL-1β. In vivo, mBSA triggered rapid and prominent immune cell infiltration that is dependent on IL-1β induction. Taken together, these data demonstrate that by mimicking amyloidogenic proteins mBSA exhibits strong innate immune functions and serves as a potent adjuvant. These findings advance our understanding on the underlying mechanism of how aberrant immune responses lead to autoimmune reactions

    DNA methylation and methyl-CpG binding proteins: developmental requirements and function

    Get PDF
    DNA methylation is a major epigenetic modification in the genomes of higher eukaryotes. In vertebrates, DNA methylation occurs predominantly on the CpG dinucleotide, and approximately 60% to 90% of these dinucleotides are modified. Distinct DNA methylation patterns, which can vary between different tissues and developmental stages, exist on specific loci. Sites of DNA methylation are occupied by various proteins, including methyl-CpG binding domain (MBD) proteins which recruit the enzymatic machinery to establish silent chromatin. Mutations in the MBD family member MeCP2 are the cause of Rett syndrome, a severe neurodevelopmental disorder, whereas other MBDs are known to bind sites of hypermethylation in human cancer cell lines. Here, we review the advances in our understanding of the function of DNA methylation, DNA methyltransferases, and methyl-CpG binding proteins in vertebrate embryonic development. MBDs function in transcriptional repression and long-range interactions in chromatin and also appear to play a role in genomic stability, neural signaling, and transcriptional activation. DNA methylation makes an essential and versatile epigenetic contribution to genome integrity and function

    An annotated and critical glossary of the terminology of inclusion in healthcare and health research

    Get PDF
    yesThe importance of including members of the public has been accorded a significant position in health planning, service delivery and research. But this position masks a lack of clarity about terms that are used. This paper identifies terms that are in common use in the lexicon of community based involvement and engagement in health with the intention of clarifying meaning and thus reducing ambiguity. We define and distinguish between key terms related to inclusion, we consider the terminology attached to community processes and to the challenges of inclusion and we engage with the strengths and weaknesses of the commonly used metaphor of "a ladder of participation". We wish to contribute to the clear communication of intentions, challenges and achievements in pursuing varied forms of inclusion in health

    In vitro nuclear interactome of the HIV-1 Tat protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86–101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry.</p> <p>Results</p> <p>Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied <it>in silico </it>analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture.</p> <p>Conclusion</p> <p>We have completed the <it>in vitro </it>Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.</p
    corecore