75 research outputs found

    Ancient marine sediment DNA reveals diatom transition in Antarctica

    Get PDF
    Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to openocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.Postprin

    Ancient marine sediment DNA reveals diatom transition in Antarctica

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The following databases were used in this study: SILVA small (version 132Ref-nr) and large (version 132Ref) subunit ribosomal RNA database (https://www.arb-silva.de/), and psbO55 (https://www.ebi.ac.uk/biostudies/studies/S-BSST659?query=S-BSST659). Detailed Supplementary Information on methods and analysis is provided with this submission. The demultiplexed raw sequencing data generated and analysed during this study have been deposited in the NCBI Sequence Read Archive database (https://www.ncbi.nlm.nih.gov/sra) under Accession code/BioProject PRJNA861836 (BioSamples SAMN29928044 - SAMN29928123)59, and includes metadata for each sediment and control sample. For further requests please contact the corresponding author. Source data are provided with this paper.Code availability: The bioinformatic pipeline used in this study was previously published in ref. 8 and additional information is provided with the Supplementary Information Notes 1–3.Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.Australian and New Zealand International Ocean Discovery Program Consortium (ANZIC)University of AdelaideAustralian Research Council (ARC)Deutsche Forschungsgemeinschaft (DFG)NASANational Science Foundation (NSF)Dutch Research Council (NWO)European Union Horizon 202

    Letters to the Editor

    No full text

    Magnetic susceptibility as a proxy for coal ash pollution within riverbed sediments in a watershed with complex geology (southeastern USA)

    No full text
    A study of near surface sediments from the Dan River (southeastern USA) was conducted to assess the use of magnetic properties as proxies of coal ash after a recent spill. The watershed geology is diverse and potentially contributes magnetic minerals to riverbed sediment from diabase dikes in the Dan River Triassic Basin and from granitic gneiss outside the basin. Coal ash is heterogeneous, including aluminosilicate spheres, amorphous particles and carbonaceous rods and lacy particles. The magnetic fraction of ash from the failed storage pond is up to 17 wt% and is mostly composed of black spheres with maghemite and magnetite. Ash was detected in riverbed sediment from quiet water settings such as inside of meander bends, the confluence of tributary streams and near islands between the spill site and 20 miles downstream in the Schoolfield Reservoir, Danville, VA. The strong magnetic signal is detected above background in riverbed samples and is strongly positively correlated with total ash; elevated low field magnetic susceptibility (χ LF) is evident in samples with ≥ 12% ash content. Anhysteretic remanent magnetization and hysteresis parameters delineate native sediment, ash-bearing sediment, and diabase dikes. Between 20 and 70 miles downstream of the spill site, ash concentrations were either buried or too low due to dilution with native sediment to be detected with χ LF in riverbed samples

    East Antarctic Margin marine sediment record of deglaciation

    Get PDF
    The Antarctic shelf is traversed by large-scale troughs developed by glacial erosion. Swath bathymetric, lithologic, and chronologic data from jumbo piston cores from four sites along the East Antarctic margin (Iceberg Alley, the Nielsen Basin, the Svenner Channel, and the Mertz-Ninnis Trough) are used to demonstrate that these cross-shelf features controlled development of calving bay reentrants in the Antarctic ice sheet during deglaciation. At all sites except the Mertz-Ninnis Trough, the transition between the Last Glacial Maximum and the Holocene is characterized by varved couplets deposited during a short interval of extremely high primary productivity in a fjordlike setting. Nearly monospecific layers of the diatom Chaetoceros alternate with slightly more terrigenous layers containing a mixed diatom assemblage. We propose that springtime diatom blooms dominated by Chaetoceros were generated within well-stratified and restricted surface waters of calving bays that were influenced by the input of iron-rich meltwater. Intervening post-bloom summer-fall laminae were formed through the downward flux of terrigenous material sourced from melting glacial ice combined with mixed diatom assemblages. Radiocarbon-based chronologies that constrain the timing of deposition of the varved sediments within calving bay reentrants along the East Antarctic margin place deglaciation between ca. 10,500–11,500 cal yr B.P., post-dating Meltwater Pulse 1A (14,200 cal yr B.P.) and indicating that retreat of ice from the East Antarctic margin was not the major contributor to this pulse of meltwater
    corecore