70 research outputs found

    Green Care: a Conceptual Framework. A Report of the Working Group on the Health Benefits of Green Care

    Get PDF
    ‘Green Care’ is a range of activities that promotes physical and mental health and well-being through contact with nature. It utilises farms, gardens and other outdoor spaces as a therapeutic intervention for vulnerable adults and children. Green care includes care farming, therapeutic horticulture, animal assisted therapy and other nature-based approaches. These are now the subject of investigation by researchers from many different countries across the world

    Transmission of Stress-Induced Learning Impairment and Associated Brain Gene Expression from Parents to Offspring in Chickens

    Get PDF
    BACKGROUND: Stress influences many aspects of animal behaviour and is a major factor driving populations to adapt to changing living conditions, such as during domestication. Stress can affect offspring through non-genetic mechanisms, but recent research indicates that inherited epigenetic modifications of the genome could possibly also be involved. METHODOLOGY/PRINCIPAL FINDINGS: Red junglefowl (RJF, ancestors of modern chickens) and domesticated White Leghorn (WL) chickens were raised in a stressful environment (unpredictable light-dark rhythm) and control animals in similar pens, but on a 12/12 h light-dark rhythm. WL in both treatments had poorer spatial learning ability than RJF, and in both populations, stress caused a reduced ability to solve a spatial learning task. Offspring of stressed WL, but not RJF, raised without parental contact, had a reduced spatial learning ability compared to offspring of non-stressed animals in a similar test as that used for their parents. Offspring of stressed WL were also more competitive and grew faster than offspring of non-stressed parents. Using a whole-genome cDNA microarray, we found that in WL, the same changes in hypothalamic gene expression profile caused by stress in the parents were also found in the offspring. In offspring of stressed WL, at least 31 genes were up- or down-regulated in the hypothalamus and pituitary compared to offspring of non-stressed parents. CONCLUSIONS/SIGNIFICANCE: Our results suggest that, in WL the gene expression response to stress, as well as some behavioural stress responses, were transmitted across generations. The ability to transmit epigenetic information and behaviour modifications between generations may therefore have been favoured by domestication. The mechanisms involved remain to be investigated; epigenetic modifications could either have been inherited or acquired de novo in the specific egg environment. In both cases, this would offer a novel explanation to rapid evolutionary adaptation of a population

    Coping with unpredictability: Dopaminergic and neurotrophic responses to omission of expected reward in Atlantic salmon (Salmo salar L.).

    Get PDF
    Comparative studies are imperative for understanding the evolution of adaptive neurobiological processes such as neural plasticity, cognition, and emotion. Previously we have reported that prolonged omission of expected rewards (OER, or 'frustrative nonreward') causes increased aggression in Atlantic salmon (Salmo salar). Here we report changes in brain monoaminergic activity and relative abundance of brain derived neurotrophic factor (BDNF) and dopamine receptor mRNA transcripts in the same paradigm. Groups of fish were initially conditioned to associate a flashing light with feeding. Subsequently, the expected food reward was delayed for 30 minutes during two out of three meals per day in the OER treatment, while the previously established routine was maintained in control groups. After 8 days there was no effect of OER on baseline brain stem serotonin (5-HT) or dopamine (DA) activity. Subsequent exposure to acute confinement stress led to increased plasma cortisol and elevated turnover of brain stem DA and 5-HT in all animals. The DA response was potentiated and DA receptor 1 (D1) mRNA abundance was reduced in the OER-exposed fish, indicating a sensitization of the DA system. In addition OER suppressed abundance of BDNF in the telencephalon of non-stressed fish. Regardless of OER treatment, a strong positive correlation between BDNF and D1 mRNA abundance was seen in non-stressed fish. This correlation was disrupted by acute stress, and replaced by a negative correlation between BDNF abundance and plasma cortisol concentration. These observations indicate a conserved link between DA, neurotrophin regulation, and corticosteroid-signaling pathways. The results also emphasize how fish models can be important tools in the study of neural plasticity and responsiveness to environmental unpredictability

    Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    Get PDF
    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli

    Functional characterization of a human histone gene cluster duplication

    No full text
    Histones are the major protein component of nucleosomes, and de novo histone synthesis is essential for packaging newly replicated DNA into chromatin. As a result, histone gene expression is exquisitely and functionally coupled with DNA replication. Vastly divergent organisms such as yeast, fly and human all demonstrate the phylogenetically conserved propensity to maintain clustering of histone genes at one or more genomic loci. Although specific mechanisms are unclear, clustering is presumed to be important for common stringent transcriptional control of these genes at the G1/S phase transition. In this study, we describe a genomic duplication of the human histone gene cluster located at chromosome 1q21, which effectively doubles the previously known size and gene number of that cluster. The duplication persists in all examined tissues and cell lines, and the duplicated genes are transcriptionally active. Levels of messenger RNAs for duplicated histone H4 genes are high relative to those for non-duplicated H4 genes. Our data suggest that transcriptionally robust histone H4 genes may have been preferentially duplicated during evolution

    Melanin-based skin spots reflect stress responsiveness in salmonid fish

    Get PDF
    Within animal populations, genetic, epigenetic and environmental factors interact to shape individual neuroendocrine and behavioural profiles, conferring variable vulnerability to stress and disease. It remains debated how alternative behavioural syndromes and stress coping styles evolve and are maintained by natural selection. Here we show that individual variation in stress responsiveness is reflected in the visual appearance of two species of teleost fish; rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Salmon and trout skin vary from nearly immaculate to densely spotted, with black spots formed by eumelanin-producing chromatophores. In rainbow trout, selection for divergent hypothalamus-pituitary-interrenal responsiveness has led to a change in dermal pigmentation patterns, with low cortisol-responsive fish being consistently more spotted. In an aquaculture population of Atlantic salmon individuals with more spots showed a reduced physiological and behavioural response to stress. Taken together, these data demonstrate a heritable behavioural-physiological and morphological trait correlation that may be specific to alternative coping styles. This observation may illuminate the evolution of contrasting coping styles and behavioural syndromes, as occurrence of phenotypes in different environments and their response to selective pressures can be precisely and easily recorded

    An architectural perspective of cell-cycle control at the G1/S phase cell-cycle transition

    No full text
    A prominent role for the execution of cell cycle and growth regulatory mechanisms within the three-dimensional context of nuclear architecture is becoming increasingly evident. Signaling pathways and regulatory networks that govern activation and suppression of genes controlling proliferation are functionally integrated for the organization and assembly of transcriptional machinery in nuclear microenvironments. The transcriptional activation of histone genes at the G1/S phase transition (S-point) is temporarily, functionally, and spatially distinct from transcriptional mechanisms at the restriction point (R-point). The spatial distinction in R-point versus S-point control is the localization of clustered histone gene loci at cajal bodies, which is modulated during the cell cycle. Histone nuclear factor P (HiNF-P), the principal factor mediating H4 histone gene transcription, is the final link in the signaling cascade that is initiated with growth factor dependent induction of cyclin E/CDK2 kinase activity at the R-point and culminates in the NPAT-mediated activation of histone H4 genes through HiNF-P at the G1/S phase cell-cycle transition
    corecore