35 research outputs found

    Modified differentials and basic cohomology for Riemannian foliations

    Full text link
    We define a new version of the exterior derivative on the basic forms of a Riemannian foliation to obtain a new form of basic cohomology that satisfies Poincar\'e duality in the transversally orientable case. We use this twisted basic cohomology to show relationships between curvature, tautness, and vanishing of the basic Euler characteristic and basic signature.Comment: 20 pages, references added, minor corrections mad

    Drug Resistance in Glioma Cells Induced by a Mesenchymal–Amoeboid Migratory Switch

    Get PDF
    Cancer cell invasion is a precondition for tumour metastasis and represents one of the most devastating characteristics of cancer. The development of drugs targeting cell migration, known as migrastatics, may improve the treatment of highly invasive tumours such as glioblastoma (GBM). In this study, investigations into the role of the cell adhesion protein Cellular communication network factor 1 (CCN1, also known as CYR61) in GBM cell migration uncovered a drug resistance mechanism adopted by cells when treated with the small molecule inhibitor CCG-1423. This inhibitor binds to importin α/β inhibiting the nuclear translocation of the transcriptional co-activator MKL1, thus preventing downstream effects including migration. Despite this reported role as an inhibitor of cell migration, we found that CCG-1423 treatment did not inhibit GBM cell migration. However, we could observe cells now migrating by mesenchymal–amoeboid transition (MAT). Furthermore, we present evidence that CCN1 plays a critical role in the progression of GBM with increased expression in higher-grade tumours and matched blood samples. These findings support a potential role for CCN1 as a biomarker for the monitoring and potentially early prediction of GBM recurrence, therefore as such could help to improve treatment of and increase survival rates of this devastating disease

    Fast mode decomposition in few-mode fibers

    Get PDF
    Retrieval of the optical phase information from measurement of intensity is of a high interest because this would facilitate simple and cost-efficient techniques and devices. In scientific and industrial applications that exploit multi-mode fibers, a prior knowledge of spatial mode structure of the fiber, in principle, makes it possible to recover phases using measured intensity distribution. However, current mode decomposition algorithms based on the analysis of the intensity distribution at the output of a few-mode fiber, such as optimization methods or neural networks, still have high computational costs and high latency that is a serious impediment for applications, such as telecommunications. Speed of signal processing is one of the key challenges in this approach. We present a high-performance mode decomposition algorithm with a processing time of tens of microseconds. The proposed mathematical algorithm that does not use any machine learning techniques, is several orders of magnitude faster than the state-of-the-art deep-learning-based methods. We anticipate that our results can stimulate further research on algorithms beyond popular machine learning methods and they can lead to the development of low-cost phase retrieval receivers for various applications of few-mode fibers ranging from imaging to telecommunications

    ASPM and microcephalin expression in epithelial ovarian cancer correlates with tumour grade and survival

    Get PDF
    BACKGROUND: The clinico-pathological and molecular heterogeneity of epithelial ovarian cancer (EOC) complicates its early diagnosis and successful treatment. Highly aneuploid tumours and the presence of ascitic fluids are hallmarks of EOC. Two microcephalyassociated proteins, abnormal spindle-like microcephaly-associated protein (ASPM) and microcephalin, are involved in mitosis and DNA damage repair. Their expression is deregulated at the RNA level in EOC. Here, ASPM and microcephalin protein expression in primary cultures established from the ascites of patients with EOC was determined and correlated with clinical data to assess their suitability as biomarkers. METHODS: Five established ovarian cancer cell lines, cells derived from two benign ovarian ascites samples and 40 primary cultures of EOC derived from ovarian ascites samples were analysed by protein slot blotting and/or immunofluorescence to determine ASPM and microcephalin protein levels and their cellular localisation. Results were correlated with clinico-pathological data. RESULTS: A statistically significant correlation was identified for ASPM localisation and tumour grade, with high levels of cytoplasmic ASPM correlating with grade 1 tumours. Conversely, cytoplasmic microcephalin was only identified in high-grade tumours. Furthermore, low levels of nuclear microcephalin correlated with reduced patient survival. CONCLUSION: Our results suggest that ASPM and microcephalin have the potential to be biomarkers in ovarian cance

    Cell migration in paediatric glioma; characterisation and potential therapeutic targeting

    Get PDF
    Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previously shown to inhibit the migration of adult glioma cells, on two pHGG cell lines (SF188 and KNS42) and one patient-derived DIPG line (HSJD-DIPG-007) using 2D (transwell membrane, immunofluorescence, live cell imaging) and 3D (migration on nanofibre plates and spheroid invasion in collagen) assays. Results: All lines were migratory, but there were differences in morphology and migration rates. Both LiCl and BIO reduced migration and instigated cytoskeletal rearrangement of stress fibres and focal adhesions when viewed by immunofluorescence. In the presence of drugs, loss of polarity and differences in cellular movement were observed by live cell imaging. Conclusions: Ours is the first study to demonstrate that it is possible to pharmacologically target migration of paediatric glioma in vitro using LiCl and BIO, and we conclude that these agents and their derivatives warrant further preclinical investigation as potential anti-migratory therapeutics for these devastating tumours

    EB1 Is Required for Spindle Symmetry in Mammalian Mitosis

    Get PDF
    Most information about the roles of the adenomatous polyposis coli protein (APC) and its binding partner EB1 in mitotic cells has come from siRNA studies. These suggest functions in chromosomal segregation and spindle positioning whose loss might contribute to tumourigenesis in cancers initiated by APC mutation. However, siRNA-based approaches have drawbacks associated with the time taken to achieve significant expression knockdown and the pleiotropic effects of EB1 and APC gene knockdown. Here we describe the effects of microinjecting APC- or EB1- specific monoclonal antibodies and a dominant-negative EB1 protein fragment into mammalian mitotic cells. The phenotypes observed were consistent with the roles proposed for EB1 and APC in chromosomal segregation in previous work. However, EB1 antibody injection also revealed two novel mitotic phenotypes, anaphase-specific cortical blebbing and asymmetric spindle pole movement. The daughters of microinjected cells displayed inequalities in microtubule content, with the greatest differences seen in the products of mitoses that showed the severest asymmetry in spindle pole movement. Daughters that inherited the least mobile pole contained the fewest microtubules, consistent with a role for EB1 in processes that promote equality of astral microtubule function at both poles in a spindle. We propose that these novel phenotypes represent APC-independent roles for EB1 in spindle pole function and the regulation of cortical contractility in the later stages of mitosis. Our work confirms that EB1 and APC have important mitotic roles, the loss of which could contribute to CIN in colorectal tumour cells

    Expression analysis of the MCPH1/BRIT1 and BRCA1 tumor suppressor genes and telomerase splice variants in epithelial ovarian cancer.

    Get PDF
    Aims The aim of this study was to explore the correlation of hTERT splice variant expression with MCPH1/BRIT1 and BRCA1 expression in epithelial ovarian cancer (EOC) samples. Background Telomerase activation can contribute to the progression of tumors and the development of cancer. However, the regulation of telomerase activity remains unclear. MCPH1 (also known as BRIT1, BRCT-repeat inhibitor of hTERT expression) and BRCA1 are tumor suppressor genes that have been linked to telomerase expression. Methods qPCR was used to investigate telomerase splice variants, MCPH1/BRIT1 and BRCA1 expression in EOC tissue and primary cultures. Results The wild type α+/β+ hTERT variant was the most common splice variant in the EOC samples, followed by α+/β− hTERT, a dominant negative regulator of telomerase activity. EOC samples expressing high total hTERT demonstrated significantly lower MCPH1/BRIT1 expression in both tissue (p = 0.05) and primary cultures (p = 0.03). We identified a negative correlation between MCPH1/BRIT1 and α+/β+ hTERT (p = 0.04), and a strong positive association between MCPH1/BRIT1 and both α−/β+ hTERT and α−/β− hTERT (both p = 0.02). A positive association was observed between BRCA1 and α−/β+ hTERT and α−/β− hTERT expression (p = 0.003 and p = 0.04, respectively). Conclusions These findings support a regulatory effect of MCPH1/BRIT1 and BRCA1 on telomerase activity, particularly the negative association between MCPH1/BRIT1 and the functional form of hTERT (α+/β+)
    corecore