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Fast mode decomposition in few-mode fibers
Egor S. Manuylovich 1,2✉, Vladislav V. Dvoyrin1,3 & Sergei K. Turitsyn 1,3

Retrieval of the optical phase information from measurement of intensity is of a high interest

because this would facilitate simple and cost-efficient techniques and devices. In scientific

and industrial applications that exploit multi-mode fibers, a prior knowledge of spatial mode

structure of the fiber, in principle, makes it possible to recover phases using measured

intensity distribution. However, current mode decomposition algorithms based on the ana-

lysis of the intensity distribution at the output of a few-mode fiber, such as optimization

methods or neural networks, still have high computational costs and high latency that is a

serious impediment for applications, such as telecommunications. Speed of signal processing

is one of the key challenges in this approach. We present a high-performance mode

decomposition algorithm with a processing time of tens of microseconds. The proposed

mathematical algorithm that does not use any machine learning techniques, is several orders

of magnitude faster than the state-of-the-art deep-learning-based methods. We anticipate

that our results can stimulate further research on algorithms beyond popular machine

learning methods and they can lead to the development of low-cost phase retrieval receivers

for various applications of few-mode fibers ranging from imaging to telecommunications.
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The resurgence of interest in multi-mode fibers and in few-
mode fibers (FMFs), in particular, in telecommunications
is mainly due to the recognition of the fact that only the

application of parallel channels can cope with the fast-growing
demand on capacity of communication systems. Spatial mode-
division multiplexing is one of the actively studied approaches to
provide for high capacity optical links. FMFs are widely believed
to provide the optimal practical balance between the highly
important possibility to increase the communication capacity
compared to single-mode fibers and the growing complexity of
signal processing when dealing with many transversal modes1.
Few-mode fiber is also an attractive platform for non-telecom
application fields such as imaging2, microwave photonics3, optical
sensing4, and fundamental studies of the complex nonlinear
spatiotemporal dynamics including spatiotemporal solitons and
optical beam self-cleaning5–11. Larger mode areas (as compared
to SMF) provided by FMFs suppress nonlinear effects and
improve damage threshold, making a pathway to the develop-
ment of novel high-power laser systems. Control and measure-
ment of the optical phase at the FMF output is important for
many scientific and industrial applications.

Implementation of spatial division multiplexing in modern
coherent communication systems that use both the amplitude
and phase of the optical signal is based on the sophisticated and
relatively expensive multiple-input multiple-output (MIMO)
processing schemes, which rely on bulk optics12–14. The technical
challenge in using multi-core and FMFs to increase system
capacity is related to the need to use adaptive MIMO processing
techniques for spatial de-multiplexing and to dynamically com-
pensate for the differential mode group delays. The complexity of
signal processing is growing quickly with the number of modes.
Alternative approaches to mode de-multiplexing with a reduced
complexity even for few mode fibers are of great interest for both
telecom and other applications. Highly attractive solution, from a
practical viewpoint, would be the phase retrieval for optical beams
or pulses from intensity-only measurements15. Recently, fiber
transmission in three-modes-both-polarization using direct
detection (intensity-only measurements) was demonstrated16.
Carrierless phase-retrieving coherent measurements in single
mode fibers using a multimode scrambler were also demonstrated
using a two-dimensional photodiode array17. It should be stressed
that phase retrieval techniques are important for various current
and future applications of multi-mode or FMFs in imaging,
sensing, delivery of high-power coherent beams, nonlinear fiber
optics, neuromorphic photonics, medical applications, and oth-
ers. In this work, our focus is not on a particular application, but
on the development of an advanced signal processing algorithm
that can be applied across these fields.

Growing interest in FMF stimulates the demand for efficient
beam characterization algorithms at the fiber output. The sim-
plest approach is to measure the M2 factor of the beam18, which,
however, considers only the beam divergence. A full description
of the beam includes a characterization of the amplitudes and
phases of the waveguide eigenmodes. This problem is known as
mode decomposition (MD).

Several approaches based on use of a reference beam such as
digital holography19,20 and multi-plane light conversion21,22 have
been proposed. However, implementation of these methods
requires a coherent radiation source on the receiver side that
limits their applicability.

A number of methods without a reference beam have been
proposed to solve the MD problem. Numerical computing-based
MD methods include the classical Gerchberg–Saxton technique23,
line-search24, and stochastic parallel gradient descent25. Methods
include iterative procedures such as gradient descent or genetic
algorithms. Although iterative methods show a high accuracy and

a performance that makes it possible to decompose several times
a second, they are still sensitive to the initial value and can
become stuck at a local minima.

Non-iterative methods for MD include using the fractional
Fourier system26 or machine learning methods27–31. Several
neural networks architectures have been proposed either to
enhance performance of iterative methods by guessing the initial
mode weights distribution30 or for direct application for the MD
problem27,29 in FMFs. MD methods using neural networks out-
perform iterative methods in decomposition speed; however, they
require high-performance computers, a large amount of memory,
and a long time for training the neural networks. In addition, they
cope poorly when a fiber supports more than five modes.

The iterative algorithm based on stochastic parallel gradient
descent presented in ref. 32 makes it possible to decompose nine
images per second in a three-mode fiber. A hybrid genetic global
optimization algorithm33 allows only one decomposition per 150
s for six-mode fiber in noiseless case, although it does not get
stuck at local minima. The fractional-Fourier method presented
in ref. 26 makes it possible to solve the MD problem in up to 12-
mode fibers. The combined CNN/gradient descent algorithm
presented in ref. 30 allows up to 20 decompositions per second for
three-mode fiber. The fully CNN-based approach presented in
ref. 31 takes 30 ms per decomposition (33 frames per second) for
three-mode and five-mode fibers, with added noise up to 20 dB
SNR. Overall, previously published results show MD in FMFs
with up to six modes, achieve an MD time above tens of milli-
seconds. In previously published papers where the effect of noise
on MD was studied, the SNR ratio was limited to 20 dB.

However, previously published results on intensity-only are
very limited in terms of the number of modes and are char-
acterized by relatively long processing time.

In this work, we propose a non-iterative algorithmic method
for MD without using a reference beam. The method is based on
dividing the inherently non-linear MD problem into two parts: a
cumbersome linear part and a simple non-linear part. Such
approach allows not only to drastically decrease the decomposi-
tion time, but also shows a substantial increase in the number of
modes that can be resolved in the noiseless problem. The MD
method presented in this paper contributes to the rapidly
developing field of MD in FMFs with a promising new oppor-
tunity. Namely, we would like to stress a significant progress in
the time performance: the proposed method allows us to
decompose up to 100,000 frames per second for three-, five-, and
eight-mode fibers, which makes it—to the best of our knowledge
—the fastest intensity-only MD method presented to date. In a
model experiment without adding noise, we show the applic-
ability for MD in a 27-mode fiber. The stability of the algorithm
to the noise level in the input signal is not inferior to previously
published results for FMFs.

Results
Method description. Transverse distribution of an electric field
in a fiber can be represented as a linear combination of eigen-
modes Ψk:

E x; yð Þ ¼
X
k

CkΨk x; yð Þ: ð1Þ
Here Ck= Ak exp(iφk) are complex coefficients representing
amplitudes and relative phases of eigenmodes.

One can measure intensity experimentally, which is

I x; yð Þ ¼ E x; yð Þj j2� �
: ð2Þ

Adding a constant phase shift to every phase coefficient will
not affect the output intensity, so without loss of generality, we
assume φ1= 0.
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The problem of MD is to determine the coefficients Ck using
the intensity distribution at the output of the fiber.

For a fiber that supports N eigenmodes, it is necessary to
determine N amplitudes and N−1 phases (as we assume φ1= 0),
a total of 2N−1 coefficients.

If the intensity distribution is captured by a camera or an array
of photodiodes, the obtained image can be used to recover the
coefficients Ck. Consider an input image consisting of M ×M
pixels. Then Eq. (2) can be written as a system of M2 equations:

IðmÞ ¼
X
k

X
j

CkC
*
j Ψ

ðmÞ
k ΨðmÞ

j ; m ¼ 1::M2: ð3Þ

Denote

zn ¼
CkC

*
j þ CjC

*
k

2
k; j ¼ 1::N; n ¼ 1::NðN þ 1Þ=2: ð4Þ

The one-to-one correspondence between the index n and the
indices k and j is shown in the matrix below. We numerate the
vector z along the main diagonal first, and then along the
columns of the lower triangular matrix Z:

z1 0 � � � 0

zNþ1 z2 0

zNþ2 z2N z3
. .
. ..

.

..

.
z2Nþ1

..

. . .
.

0

z2N�1 � � � zNðNþ1Þ=2 zN

0
BBBBBBBB@

1
CCCCCCCCA

�

C1C
*
1 0 � � � 0

C2C
*
1þC1C

*
2

2 C2C
*
2 0 ..

.

..

. . .
.

0
CNC

*
1þC1C

*
N

2
CNC

*
2þC2C

*
N

2 � � � CNC
*
N

0
BBBBBB@

1
CCCCCCA
:

ð5Þ

Note that

zn ¼ AkAj ¼ A2
k; k ¼ j; n ¼ 1::N

zn ¼ AkAjcos φk � φj

� �
; k≠ j; n ¼ N þ 1::N N þ 1ð Þ=2

8<
: : ð6Þ

Now Eq. (3) can be written in the matrix form

I ¼ Tz: ð7Þ
Here the matrix T is of sizeM2 by N(N+ 1)/2 and the mth row of
this matrix includes pairwise products of Ψk

(m)Ψj
(m):

T ¼

Ψð1Þ
1 Ψð1Þ

1 � � � Ψð1Þ
N Ψð1Þ

N 2Ψð1Þ
1 Ψð1Þ

2 � � � 2Ψð1Þ
1 Ψð1Þ

N 2Ψð1Þ
2 Ψð1Þ

3 � � � 2Ψð1Þ
2 Ψð1Þ

N � � � 2Ψð1Þ
N�1Ψ

ð1Þ
N

..

. ..
. ..

. ..
. ..

. ..
. ..

.

ΨðmÞ
1 ΨðmÞ

1 � � � ΨðmÞ
N ΨðmÞ

N 2ΨðmÞ
1 ΨðmÞ

2 � � � 2ΨðmÞ
1 ΨðmÞ

N 2ΨðmÞ
2 ΨðmÞ

3 � � � 2ΨðmÞ
2 ΨðmÞ

N � � � 2ΨðmÞ
N�1Ψ

ðmÞ
N

..

. ..
. ..

. ..
. ..

. ..
. ..

.

Ψ M2ð Þ
1 Ψ M2ð Þ

1 � � � Ψ M2ð Þ
N Ψ M2ð Þ

N 2Ψ M2ð Þ
1 Ψ M2ð Þ

2 � � � 2Ψ M2ð Þ
1 Ψ M2ð Þ

N 2Ψ M2ð Þ
2 Ψ M2ð Þ

3 � � � 2Ψ M2ð Þ
2 Ψ M2ð Þ

N � � � 2Ψ M2ð Þ
N�1Ψ

M2ð Þ
N

0
BBBBBBBB@

1
CCCCCCCCA
:

Here the upper index (m) corresponds to the mth pixel of the
image of an eigenmode.

Equation (7) can be easily solved

z ¼ T�1I: ð8Þ
Here T−1 is a pseudoinverse (Moore–Penrose inverse) matrix and
z is a vector determined in Eqs. (5) and (6).

It should be noted that if Eq. (7) does not have exact solutions
(for example, due to a presence of a noise component in the
experimentally obtained vector I), several methods such as LMSE
and approximate message passing34 can be used to infer the
vector z. In this work, we use pseudoinverse Moore–Penrose
matrix and find the vector z using Eq. (8).

We can rewrite vector z in matrix form (see Eq. (5)):

Z ¼

z1 0 � � � 0

zNþ1 z2 0

zNþ2 z2N z3
. .
. ..

.

..

.
z2Nþ1

..

. . .
.

0

z2N�1 � � � � � � zN

0
BBBBBBBB@

1
CCCCCCCCA

�

Z1;1 0 � � � 0

Z2;1 Z2;2 0

Z3;1 Z3;2 Z3;3
. .
. ..

.

..

. ..
. ..

. . .
.

0

ZN;1 ZN;2 � � � ZN;N

0
BBBBBBBBB@

1
CCCCCCCCCA

or, considering Eq. (6)

Z ¼

A2
1 0 � � � 0

A2A1 cos φ2

� �
A2
2 0

A3A1 cos φ3

� �
A3A2 cos φ3 � φ2

� � . .
. ..

.

..

. ..
. . .

.
0

ANA1 cos φN

� � � � � ANAk cos φN � φk

� � � � � A2
N

0
BBBBBBBB@

1
CCCCCCCCA
:

ð9Þ
Now one can easily derive all amplitude coefficients:

An ¼
ffiffiffiffiffiffiffiffi
Zn;n

q
: ð10Þ

Knowing An, we can determine cosine values for all the phase
coefficients using the first column of matrix Z:

cos φk

� � ¼ Zk;1

A1Ak
: ð11Þ

Note that the replacement of all Ck, k= 1...N with their
complex conjugates Ck

*, k= 1...N leads to the same intensity
distribution. Therefore, we only need to determine the
phase coefficients up to complex conjugation. To do that, we

simply choose

φ2 ¼ þacos
Z2;1

A1A2

	 

; φ2 2 ½0; π�: ð12Þ

We should note that, without loss of generality, we assume φ1
= 0.
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Signs of other phase coefficients for k > 2 can be chosen
depending on Zk,2:

φk ¼
þacos

Zk;1

A1Ak

� �
; if

Zk;2

AkA2
¼ cos þacos

Zk;1

A1Ak

� �
� φ2

� �

�acos
Zk;1

A1Ak

� �
; if

Zk;2

AkA2
¼ cos �acos

Zk;1

A1Ak

� �
� φ2

� �
8><
>: :

We choose the sign that corresponds to the minimum
discrepancy between cos(φk±−φ2) and Zk,2/(AkA2). If there is
no noise in the input image, then Eq. (7) has an exact solution
and the discrepancy is exactly zero for either φk+ or φk-.

Thus, we recover all amplitude and phase coefficients.
We implemented the algorithm and tested its performance

against the number of eigenmodes, the resolution of input image,
and the noise of the input image.

At first, we choose external parameters of the problem, such as
numerical aperture of the fiber, core radius, signal wavelength,
and resolution of intensity image. Assuming the applicability of
the weakly guiding approximation, we calculate eigen (LP) modes
Ψk(x, y) for this fiber at a given wavelength.

Then we calculate matrices T and its Moore–Penrose inverse
T−1.

To measure the performance and accuracy of the algorithm, we
generate a random set of amplitude and phase coefficients:

Ctrue
k ¼ Atrue

k ; φtrue
k

� �
; Ak 2 0; 1½ �; φk 2 0; 2π½ �:

We then calculate the true intensity distribution that
corresponds to this set using Eq. (2):

Itrue ¼
X
k

Ctrue
k Ψk



2

:

Then we apply the decomposing algorithm to recover the
coefficients Crecov

k ¼ Arecov
k ;φrecov

k

� �
using only the intensity

distribution Itrue. After that, we calculate the intensity distribution
that corresponds to the recovered coefficients:

Irecov ¼
X
k

Crecov
k Ψk:



2

:

To evaluate the performance and accuracy of the algorithm, we
use the following metrics:

εA ¼ Arecov � Atruek k
Atruek k ; εφ ¼ φrecov � φtruek k

φtruek k ;

εNET ¼ Crecov � Ctruek k
Ctruek k ; εI ¼

Irecov � Itruek k
Itruek k :

We also measure the decomposition time Tcalc.

MD with no added noise. In the ideal case of zero noise in the
input image, the algorithm shows the best performance in terms
of accuracy and decomposition speed. There are examples of the
MD for some of the external parameters as shown in Fig. 1.

With an increase in the number of modes, the accuracy of the
recovering phase coefficients decreases faster than the accuracy
for the amplitudes. Despite a relatively low amplitude error εA for
29-mode fiber, the overall decomposition accuracy is low. So, the
described method in theory works fine for the number of modes
up to N= 27.

One can notice that phase errors are higher, in general, than
amplitude errors, and we believe that this is caused by the
calculation of amplitudes with an error and the subsequent
calculation of the phase coefficients using those imprecise
amplitude coefficients. More details on the maximum number
of modes for this method and the nature of the restrictions are

given in Supplementary materials (please refer to Supplementary
Note 1).

There is always a tradeoff between the number of modes and
the decomposition accuracy. Figure 2 shows how various error
metrics depend on the number of modes.

Each point on the graph corresponds to an error value
averaged over 10,000 decompositions.

Time performance. We investigated how the decomposition time
depends on parameters of the problem. All tests have been per-
formed on PC with CPU Intel 8700K. For a performance test, we
performed 10,000 decompositions and averaged the calculation
time. Figure 3 shows the dependence of mean decomposition
time depending on the number of modes N and the resolution of
input image M.

One can see that the decomposition time is <10 µs for 3–8-
mode fibers and the size of the processed image of 16 × 16. In
order to evaluate performance of our method, we compared it

N = 8 modes

N = 15 modes

N = 27 modes

N = 29 modes

�A = 2.7e–11
�φ = 4.8e–08
�NET = 3.7e–08
�I = 5.7e–11

�A = 8.8e–10

�A = 5.3e–03

�A = 1.9e–01

�φ = 2.0e–09

�φ = 2.2e–02

�φ = 6.3e–01

�NET = 1.6e–09

�NET = 1.7e–02

�I = 2.2e–09

�I = 2.4e–02

�NET = 5.2e–01
�I = 3.3e–01

True intensity
a

b

c

d

Reconstructed Discrepancy

Fig. 1 Examples of noiseless mode decomposition. Mode decomposition
for a 8-mode, b 14-mode, c 27-mode, d 29-mode fibers. Input image size of
100 × 100 pixels. Decomposition errors are shown on the right of each set
of images. Here εA—amplitude error, εφ—phase error, εNET—total error, and
εI—intensity error.
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10–5
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10–15

3 5 6 8 10 12 15 17 19

Number of modes, N

21 23 25 27

�A

�φ

�NET

�I

Fig. 2 Noiseless decomposition errors. Dependence of the amplitude,
phase, net and intensity errors on the number of modes in the absence of
noise. Here εA—amplitude error, εφ—phase error, εNET—total error, and εI—
intensity error. Source data are provided as a Source Data file.
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with the fastest previously published method31. The direct
comparison of the numerical algorithm developed here with the
fastest MD method presented before is challenging, because
the latter approach is based on GPU calculations. To compare
these algorithms, we implemented the previously published deep
learning MD method and tested its time performance using the
same CPU as we were using for testing our MD algorithm. The
computation time is averaged over 1000 decompositions.
Decomposition time for the deep learning method depending
on image size M and the number of modes N is presented in
Table 1.

We tested our algorithm for the same parameters. The result is
presented in Table 2.

The performance gain is summarized in Table 3.
Thus, we demonstrate that the proposed new method is more

than 1000 times faster than the fastest method for MD presented
before.

MD with added noise. For practical applications we need to
investigate how the decomposition accuracy depends on the noise
level in the input image. We apply an additive white Gaussian
noise model to the intensity:

Inoisyðx; yÞ ¼ max 0; Itrueðx; yÞ þ N 0; αð Þ �max Itrueð Þ½ �:

Here N(0, α)—a normally distributed random matrix of the same
size as Itrue. Noise factor α determines the variance of the noise.
Max[0, x] function is applied to avoid negative values of intensity.

For each pair α, M we performed decompositions for 10,000
random sets Ck

set with added noise. Then error metrics were
averaged over these 10,000 decompositions.

It turns out that for decomposition accuracy there is always a
trade-off between number of modes and noise level. Figure 4
shows how decomposition errors depend on the noise level for
various numbers of modes for the fixed image size of 100 × 100
pixels.

Figures 5 and 6 show how the amplitude error and the net
error depend on the noise factor and resolution of the input
image. The vertical axis corresponds to the signal-to-noise-ratio
in the input image, and the horizontal axis corresponds to the
image size M. The color shows the decomposition error in
decibels.

Figures 5 and 6 show that the method can be applicable for MD
with a net error of 10−1 at a noise level of 10−2 for 3-mode fiber
and at a noise level of 10−3 for 5-mode fiber correspondingly.

For 6–8-mode fibers, the noise requirements are further
enhanced. For higher-mode fibers, the noise level needed to
reliably determine the amplitudes and phases of the modes is too
low for the method to be applied in practice. However, we
anticipate that more accurate noise consideration can improve
MD accuracy. Due to non-negativity of the intensity noise, its
distribution is non-Gaussian, which induces additional errors in
the mode weight distribution. For more information on the error
distribution please see the Supplementary materials (please refer
to Supplementary Note 2).

As mentioned above, phase errors and consequently net errors
increase faster than the amplitude errors with SNR decreasing.

Experimental verification. We also performed an experimental
verification of our MD algorithm. The experimental setup is
shown in Fig. 7.

Laser light with a wavelength of 650 nm passed through a silica
fiber with a numerical aperture of 0.14 and a core diameter of 5.3
μm. The normalized frequency is V= 3.59, and the fiber supports
three eigenmodes at this wavelength: LP01, LP11o and LP11e. We
used a 4-f imaging system to expose the near field on a CCD
camera. The quantization of the camera was 10 bits, correspond-
ing to a total of 1024 different intensity levels. The focal lengths of
the lenses are f1= 4.51 mm and f2= 300 mm, which corresponds
to a magnification of about 66.5. We also used a polarizer to select
only one polarization component. By rotating the polarizer by
90°, we were able to decompose both polarizations. The
decomposition speed was much higher than the speed of our
camera (60 Hz), so, initially, we recorded a series of images in
both polarizations and then applied the decomposition algorithm
to test its speed and accuracy.

The resulting image was cropped to the size of 128 × 128 pixels.
Then the background intensity level was subtracted from each
image. This background was non-zero even when the main
lighting in the lab was turned off and it was mainly caused by the
beam light scattered by elements of the setup as well as a residual
lighting, e.g. from the PC screen. This resulted in a pedestal
observed in each measured image. Figure 8 shows (a) a measured
image, (b) the pedestal outside the main beam, and (c) a
histogram of intensity distribution in the pedestal. The mean

Table 1 Decomposition time (in seconds) using the deep
learning algorithm.

M N 3 5 8

32 3.13E−02 3.16E−02 4.20E−02
64 3.97E−02 4.29E−02 7.26E−02
128 7.44E−02 8.69E−02 2.17E−01

Table 2 Decomposition time (in seconds) using the
presented algorithm.

M N 3 5 8

32 2.00E−05 2.12E−05 2.12E−05
64 3.03E−05 3.13E−05 3.14E−05
128 6.33E−05 6.58E−05 6.87E−05

Table 3 The comparative performance gain (times).

M N 3 5 8

32 1565 1491 1981
64 1310 1371 2312
128 1175 1321 3159

100
Im

ag
e 

si
ze

, M

Number of modes, N

80

60

40

20

4 6 8 10 12 14 16

200 μs

100 μs

70 μs

50 μs
40 μs
30 μs

20 μs

10 μs

<10 μμs <20 μs

<30 μs

<40 μs

<50 μs

<70 μs

<100 μs

<200 μs

Fig. 3 Time performance. Mean decomposition time for different image
sizes and number of modes. Decomposition time is color-coded. Source
data are provided as a Source Data file.
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intensity value of the pedestal was subtracted from each image
and then the MD was performed. Noise level was calculated as a
standard deviation of the pedestal intensity. The measured SNR
value is 23 dB.

All images were processed using our algorithm and then
images were reconstructed using the recovered weights and
phases. The accuracy of MD was checked by calculating the
correlation24 between the captured and the reconstructed images:

Corr ¼
RR

ΔIm rð ÞΔIr rð Þd2rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRR
ΔIm rð Þ2d2r � RRΔIr rð Þ2d2r

q



: ð13Þ

Here Im, Ir are measured and reconstructed intensity distribu-
tions, ΔIj(r)= Ij(r)−Ῑj, j=m, r, and Corr is the correlation factor
between captured and reconstructed images.

Figure 9 shows experimentally measured images in near field
and their correlation with the reconstructed images using our MD
algorithm.

The algorithm shows quite high overall decomposition
accuracy and excellent time performance. Mean correlation is
above 0.99 over all captured and decomposed images.

The proposed method can be easily expanded for the MD of
both polarizations—it is enough to install a polarization beam
splitter instead of a polarizer and to measure the intensity
distribution for both polarization states.

Discussion
We have proposed a new technique for the phase retrieval in
FMFs using intensity-only measurements. We have demonstrated
an excellent time performance of the method for FMFs: the
decomposition time is as small as 10 µs, which is 1000 times
better than the decomposition time using convolutional neural
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networks. The proposed approach shows superior performance
compared to other MD methods such as SGD and GA because it
is non-iterative. It is worth mentioning that the proposed in this
paper method does not require a reference beam in contrast to,
for example, the digital holography method. Another important
advantage of the technique is that it does not need an initial
approximation, to which iterative methods are sensitive and may
become stuck at a local optimum. Although the methods based
on the convolutional neural networks also do not require any
initial assumption, they are currently applicable to fibers with a
number of eigenmodes of only up to 12 for a noiseless MD.

We have demonstrated that our method is capable for MD of
no-added-noise images for number of modes of up to N ≈ 27,
which is the best achieved result as compared to the current
optimization approaches and CNN methods. The number of
modes that our technique can currently recover is limited by the
structure of matrix T, which becomes ill-conditioned with the
increase in number of modes (see Supplementary naterials).

At present, we have successfully demonstrated for the 3-mode
and 5-mode fibers that our method is capable of recovering both
amplitude and phase coefficients when the noise factor α is about
10−2 and 10−3, correspondingly. For the eight-mode fiber, only
intensity coefficients can be recovered when the noise factor α is
lower than 10−4. Decomposition of noisy images requires a
higher signal-to-noise ratio for higher-order mode fibers.

In general, an increase in the resolution of the input image
results in the improved decomposition accuracy; at the same
time, the decomposition time elongates. To increase the accuracy
further, more sophisticated methods can be applied for inferring
vector Z, e.g. a generalized message passing algorithm. Inference
of vector Z using probabilistic approach can benefit from incor-
porating an appropriate noise model in the inference problem.

It is worth mentioning that our new mathematical algorithm
outperforms state-of-the-art deep learning-based methods, illus-
trating the importance of fresh mathematical ideas in this field.

In spite of remaining technical challenges, we believe that the
reported here efficient and computationally simple MD techni-
ques together with recent advances35 in real-time evaluation of
multi-mode fibers’ transfer matrix using single-ended channel
estimation are important steps towards the development of future
cost-efficient receivers for spatial-division multiplexing systems.

Methods
The fiber used in the experiments is a standard commercially available Corning
HI1060 fiber. The laser used in the experiments is a standard telecom semi-
conductor fault locator with a central wavelength of 650 nm. The camera for
capturing intensity patterns is Ximea mq013rg-e2. All numerical simulations are
performed on a PC with CPU Intel 8700k. LP mode calculation, MD algorithm and
all performance tests were written using MATLAB R2019b.

Data availability
The data that supports the findings of this study is available from the corresponding
author upon reasonable request. Source data are provided with this paper.

Code availability
Code for implementing the mode decomposition algorithm is available from the
corresponding author upon reasonable request.
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