11 research outputs found

    Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment

    Get PDF
    LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020

    Measurement of the gamma ray background in the Davis Cavern at the Sanford Underground Research Facility

    Get PDF
    Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from γ-rays emitted by 40K and the 238U and 232Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4,850-foot level. In order to characterise the cavern background, in-situ γ-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0--3300~keV) varied from 596~Hz to 1355~Hz for unshielded measurements, corresponding to a total flux in the cavern of 1.9±0.4~γ cm−2s−1. The resulting activity in the walls of the cavern can be characterised as 220±60~Bq/kg of 40K, 29±15~Bq/kg of 238U, and 13±3~Bq/kg of 232Th

    TRITIUM - A Quasi Real-Time Low Activity Tritium Monitor for Water

    No full text
    Tritium is released abundantly to the environment by nuclear power plants (NPP), as a product of neutron capture by hydrogen and deuterium. In normal running conditions, released cooling waters may contain levels of tritium close to or even larger than the maximum authorised limit for human consumption (drinking and irrigation). The European Council Directive 2013/51/Euratom requires a maximum level of tritium in water for human consumption lower than 100 Bq=L. Current monitoring of tritium activity in water by liquid scintillating method takes about two days and can only be carried out in a dedicated laboratory. This system is not appropriate for real time monitoring. At present, there exists no available detector device with enough sensitivity to monitor waters for human consumption with high enough sensitivity. The goal of the TRITIUM project is to build a tritium monitor capable to measure tritium activities with detection limit close to 100Bq=L, using instrumentation technique developed in recent years for Nuclear and Particle Physics, such as scintillating fibres and silicon photomultipliers (SiPM). In this paper the current status of the TRITIUM project is presented and he results of first prototypes are discussed. A detector system based on scintillating fibers read out either photomultiplier tubes (PMTs) or silicon photomultiplier (SiPM) arrays is under development and will be installed in the vicinity of Almaraz nuclear power plant (Cáceres, Spain) by the fourth term of 2019

    TRITIUM - A Quasi Real-Time Low Activity Tritium Monitor for Water

    Get PDF
    Tritium is released abundantly to the environment by nuclear power plants (NPP), as a product of neutron capture by hydrogen and deuterium. In normal running conditions, released cooling waters may contain levels of tritium close to or even larger than the maximum authorised limit for human consumption (drinking and irrigation). The European Council Directive 2013/51/Euratom requires a maximum level of tritium in water for human consumption lower than 100 Bq=L. Current monitoring of tritium activity in water by liquid scintillating method takes about two days and can only be carried out in a dedicated laboratory. This system is not appropriate for real time monitoring. At present, there exists no available detector device with enough sensitivity to monitor waters for human consumption with high enough sensitivity. The goal of the TRITIUM project is to build a tritium monitor capable to measure tritium activities with detection limit close to 100Bq=L, using instrumentation technique developed in recent years for Nuclear and Particle Physics, such as scintillating fibres and silicon photomultipliers (SiPM). In this paper the current status of the TRITIUM project is presented and he results of first prototypes are discussed. A detector system based on scintillating fibers read out either photomultiplier tubes (PMTs) or silicon photomultiplier (SiPM) arrays is under development and will be installed in the vicinity of Almaraz nuclear power plant (Cáceres, Spain) by the fourth term of 2019

    Report on the ECFA Early-Career Researchers Debate on the 2020 European Strategy Update for Particle Physics

    No full text
    A group of Early-Career Researchers (ECRs) has been given a mandate from the European Committee for Future Accelerators (ECFA) to debate the topics of the current European Strategy Update (ESU) for Particle Physics and to summarise the outcome in a brief document [1]. A full-day debate with 180 delegates was held at CERN, followed by a survey collecting quantitative input. During the debate, the ECRs discussed future colliders in terms of the physics prospects, their implications for accelerator and detector technology as well as computing and software. The discussion was organised into several topic areas. From these areas two common themes were particularly highlighted by the ECRs: sociological and human aspects; and issues of the environmental impact and sustainability of our research
    corecore