37 research outputs found

    Mapping Molecular Recognition of β1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus

    Get PDF
    This work was supported by Fundação para a Ciência e a Tecnologia (FCT-MCTES), Portugal, through project grant PTDC/BIA-MIB/31730/2017 (to A.S.P.), fellowships PD/BD/105727/2014 (to V.G.C.) and SFRH/BD/143494/2019 (to F.T.), and program contract DL-57/2016 (to B.A.P. and C.N.) and by Wellcome Trust Biomedical Resource grants number WT108430/Z/15/Z and WT218304/Z/19/Z, a March of Dimes (Arlington, VA, USA) Prematurity Research Center grant (number 22-FY18-821) for the funding to the Carbohydrate Microarray Facility, Associate Laboratory projects LAQV-REQUIMTE (UIDB/50006/2020) and CICECO-Aveiro Institute of Materials (UIDB/50011/2020 & UIDP/50011/2020), and by the Applied Molecular Biosciences Unit (UCIBIO), which is financed by Portuguese national funds from FCT-MCTES (UIDP/04378/2020 and UIDB/04378/2020).A multigene polysaccharide utilization locus (PUL) encoding enzymes and surface carbohydrate (glycan)-binding proteins (SGBPs) was recently identified in prominent members of Bacteroidetes in the human gut and characterized in Bacteroides ovatus. This PUL-encoded system specifically targets mixed-linkage β1,3-1,4-glucans, a group of diet-derived carbohydrates that promote a healthy microbiota and have potential as prebiotics. The BoSGBPMLG-A protein encoded by the BACOVA_2743 gene is a SusD-like protein that plays a key role in the PUL's specificity and functionality. Here, we perform a detailed analysis of the molecular determinants underlying carbohydrate binding by BoSGBPMLG-A, combining carbohydrate microarray technology with quantitative affinity studies and a high-resolution X-ray crystallography structure of the complex of BoSGBPMLG-A with a β1,3-1,4-nonasaccharide. We demonstrate its unique binding specificity toward β1,3-1,4-gluco-oligosaccharides, with increasing binding affinities up to the octasaccharide and dependency on the number and position of β1,3 linkages. The interaction is defined by a 41-Å-long extended binding site that accommodates the oligosaccharide in a mode distinct from that of previously described bacterial β1,3-1,4-glucan-binding proteins. In addition to the shape complementarity mediated by CH-π interactions, a complex hydrogen bonding network complemented by a high number of key ordered water molecules establishes additional specific interactions with the oligosaccharide. These support the twisted conformation of the β-glucan backbone imposed by the β1,3 linkages and explain the dependency on the oligosaccharide chain length. We propose that the specificity of the PUL conferred by BoSGBPMLG-A to import long β1,3-1,4-glucan oligosaccharides to the bacterial periplasm allows Bacteroidetes to outcompete bacteria that lack this PUL for utilization of β1,3-1,4-glucans. IMPORTANCE With the knowledge of bacterial gene systems encoding proteins that target dietary carbohydrates as a source of nutrients and their importance for human health, major efforts are being made to understand carbohydrate recognition by various commensal bacteria. Here, we describe an integrative strategy that combines carbohydrate microarray technology with structural studies to further elucidate the molecular determinants of carbohydrate recognition by BoSGBPMLG-A, a key protein expressed at the surface of Bacteroides ovatus for utilization of mixed-linkage β1,3-1,4-glucans. We have mapped at high resolution interactions that occur at the binding site of BoSGBPMLG-A and provide evidence for the role of key water-mediated interactions for fine specificity and affinity. Understanding at the molecular level how commensal bacteria, such as prominent members of Bacteroidetes, can differentially utilize dietary carbohydrates with potential prebiotic activities will shed light on possible ways to modulate the microbiome to promote human health.publishersversionpublishe

    Diverse specificity of cellulosome attachment to the bacterial cell surface

    Get PDF
    This work was supported by the EU FP7 programme under the WallTraC project (grant No. 263916) and by projects PTDC/BIA-MIC/5947/2014, RECI/BBB-BEP/0124/2012 and EXPL/BIA-MIC/1176/2012 supported by Fundacao para a Ciencia e Tecnologia (FCT-MCTES). The Research Unit UCIBIO (Unidade de Ciencias Biomoleculares Aplicadas) is financed by national funds from FCT/MCTES EC (UID/Multi/04378/2013) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728). We thank the European Synchrotron Radiation Facility (Grenoble, France), Soleil (Saint-Aubin, France) and Diamond Light Source (Harwell, UK) for data collection and the European Community's Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement No. 283570, proposal number: Biostruct-X_ 4399) for funding.During the course of evolution, the cellulosome, one of Nature's most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly.publishersversionpublishe

    Fungal glucuronoyl esterases : Genome mining based enzyme discovery and biochemical characterization

    Get PDF
    4-O-Methyl-d-glucuronic acid (MeGlcA) is a side-residue of glucuronoarabinoxylan and can form ester linkages to lignin, contributing significantly to the strength and rigidity of the plant cell wall. Glucuronoyl esterases (4-O-methyl-glucuronoyl methylesterases, GEs) can cleave this ester bond, and therefore may play a significant role as auxiliary enzymes in biomass saccharification for the production of biofuels and biochemicals. GEs belong to a relatively new family of carbohydrate esterases (CE15) in the CAZy database (www.cazy.org), and so far around ten fungal GEs have been characterized. To explore additional GE enzymes, we used a genome mining strategy. BLAST analysis with characterized GEs against approximately 250 publicly accessible fungal genomes identified more than 150 putative fungal GEs, which were classified into eight phylogenetic sub-groups. To validate the genome mining strategy, 21 selected GEs from both ascomycete and basidiomycete fungi were heterologously produced in Pichia pastoris. Of these enzymes, 18 were active against benzyl d-glucuronate demonstrating the suitability of our genome mining strategy for enzyme discovery.4-O-Methyl-D-glucuronic acid (MeGlcA) is a side-residue of glucuronoarabinoxylan and can form ester linkages to lignin, contributing significantly to the strength and rigidity of the plant cell wall. Glucuronoyl esterases (4-O-methyl-glucuronoyl methylesterases, GEs) can cleave this ester bond, and therefore may play a significant role as auxiliary enzymes in biomass saccharification for the production of biofuels and biochemicals. GEs belong to a relatively new family of carbohydrate esterases (CE15) in the CAZy database (www.cazy.org), and so far around ten fungal GEs have been characterized. To explore additional GE enzymes, we used a genome mining strategy. BLAST analysis with characterized GEs against approximately 250 publicly accessible fungal genomes identified more than 150 putative fungal GEs, which were classified into eight phylogenetic sub-groups. To validate the genome mining strategy, 21 selected GEs from both ascomycete and basidiomycete fungi were heterologously produced in Pichia pastoris. Of these enzymes, 18 were active against benzyl D-glucuronate demonstrating the suitability of our genome mining strategy for enzyme discovery.Peer reviewe

    Fungal feruloyl esterases: Functional validation of genome mining based enzyme discovery including uncharacterized subfamilies

    Get PDF
    Feruloyl esterases (FAEs) are a diverse group of enzymes that specifically catalyze the hydrolysis of ester bonds between a hydroxycinnamic (e.g. ferulic) acid and plant poly- or oligosaccharides. FAEs as auxiliary enzymes significantly assist xylanolytic and pectinolytic enzymes in gaining access to their site of action during biomass saccharification for biofuel and biochemical production. A limited number of FAEs have been functionally characterized compared to over 1000 putative fungal FAEs that were recently predicted by similarity-based genome mining, which divided phylogenetically into different subfamilies (SFs). In this study, 27 putative and six characterized FAEs from both ascomycete and basidiomycete fungi were selected and heterologously expressed in Pichia pastoris and the recombinant proteins biochemically characterized to validate the previous genome mining and phylogenetical grouping and to expand the information on activity of fungal FAEs. As a result, 20 enzymes were shown to possess FAE activity, being active towards pNP-ferulate and/or methyl hydroxycinnamate substrates, and covering 11 subfamilies. Most of the new FAEs showed activities comparable to those of previously characterized fungal FAEs.Peer reviewe

    Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for Gluco- and Galacto- Substituted mannans and Its calcium induced stability

    Get PDF
    Articles in International JournalsThis study investigated the role of CBM35 from Clostridium thermocellum (CtCBM35) in polysaccharide recognition. CtCBM35 was cloned into pET28a (+) vector with an engineered His6 tag and expressed in Escherichia coli BL21 (DE3) cells. A homogenous 15 kDa protein was purified by immobilized metal ion chromatography (IMAC). Ligand binding analysis of CtCBM35 was carried out by affinity electrophoresis using various soluble ligands. CtCBM35 showed a manno-configured ligand specific binding displaying significant association with konjac glucomannan (Ka = 14.3×104 M−1), carob galactomannan (Ka = 12.4×104 M−1) and negligible association (Ka = 12 µM−1) with insoluble mannan. Binding of CtCBM35 with polysaccharides which was calcium dependent exhibited two fold higher association in presence of 10 mM Ca2+ ion with konjac glucomannan (Ka = 41×104 M−1) and carob galactomannan (Ka = 30×104 M−1). The polysaccharide binding was further investigated by fluorescence spectrophotometric studies. On binding with carob galactomannan and konjac glucomannan the conformation of CtCBM35 changed significantly with regular 21 nm peak shifts towards lower quantum yield. The degree of association (Ka) with konjac glucomannan and carob galactomannan, 14.3×104 M−1 and 11.4×104 M−1, respectively, corroborated the findings from affinity electrophoresis. The association of CtCBM35with konjac glucomannan led to higher free energy of binding (ΔG) −25 kJ mole−1 as compared to carob galactomannan (ΔG) −22 kJ mole−1. On binding CtCBM35 with konjac glucomannan and carob galactomannan the hydrodynamic radius (RH) as analysed by dynamic light scattering (DLS) study, increased to 8 nm and 6 nm, respectively, from 4.25 nm in absence of ligand. The presence of 10 mM Ca2+ ions imparted stiffer orientation of CtCBM35 particles with increased RH of 4.52 nm. Due to such stiffer orientation CtCBM35 became more thermostable and its melting temperature was shifted to 70°C from initial 50°C

    The family 6 carbohydrate-binding module (CtCBM6B) of Clostridium thermocellum alpha-L-arabinofuranosidase binds xylans and thermally stabilized by Ca2+ ions

    No full text
    Articles in International JournalsThe gene encoding CtCBM6B of Clostridium thermocellum α-L-arabinofuranosidase (Ct43Araf) was cloned in pET-21a(+) vector, over-expressed using Escherichia coli BL-21(DE3) cells and purified by immobilized metal-ion affinity chromatography (IMAC). The recombinant CtCBM6B showed a molecular size close to 15 kDa by SDS-PAGE analysis, which was close to the expected size of 14.74 kDa. The ligand-binding affinity of CtCBM6B was assessed against ligands for which the catalytic enzyme, Ct43Araf showed maximum activity. The affinity-gel electrophoresis of CtCBM6B with rye arabinoxylan showed lower equilibrium association constant (Ka, 4.0% C− 1), whereas, it exhibited higher affinity (Ka, 19.6% C− 1) with oat spelt xylan. The ligand-binding analysis of CtCBM6B by fluorescence spectroscopy also revealed similar results with low Ka (3.26% C− 1) with rye arabinoxylan and higher affinity for oat spelt xylan (Ka, 17.9% C− 1) which was corroborated by greater blue-shift in case of oat spelt xylan binding. The CtCBM6B binding with insoluble wheat arabinoxylan by adsorption isotherm analysis showed significant binding affinity as reflected by the equilibrium association constant (Ka), 9.4 × 103 M− 1. The qualitative analysis by SDS-PAGE also corroborated the CtCBM6B binding with insoluble wheat arabinoxylan. The protein-melting curve of CtCBM6B displayed the peak shift from 53°C to 59°C in the presence of Ca2+ ions indicating that Ca2+ ions impart thermal stability to the CtCBM6B structure

    High-throughput production of oxidized animal toxins in Escherichia coli

    No full text
    High-throughput production (HTP) of synthetic genes is becoming an important tool to explore the biological function of the extensive genomic and meta-genomic information currently available from various sources. One such source is animal venom, which contains thousands of novel bioactive peptides with potential uses as novel therapeutics to treat a plethora of diseases as well as in environmentally benign bioinsecticide formulations. Here, we describe a HTP platform for recombinant bacterial production of oxidized disulfide-rich proteins and peptides from animal venoms. High-throughput, host-optimized, gene synthesis and subcloning, combined with robust HTP expression and purification protocols, generate a semiautomated pipeline for the accelerated production of proteins and peptides identified from genomic or transcriptomic libraries. The platform has been applied to the production of thousands of animal venom peptide toxins for the purposes of drug discovery, but has the power to be universally applicable for high-level production of various and diverse target proteins in soluble form. This chapter details the HTP protocol for gene synthesis and production, which supported high levels of peptide expression in the E. coli periplasm using a cleavable DsbC fusion. Finally, target proteins and peptides are purified using automated HTP methods, before undergoing quality control and screening

    Affinity electrophoresis of <i>Ct</i>CBM35 using 7.5% native PAGE in presence of varying concentrations of (A) carob galactomannan (B) konjac glucomannan (C) 10 mM Ca<sup>2+</sup> incorporated with carob galactomannan (D) 10 mM Ca<sup>2+</sup> incorporated with konjac glucomannan (E) A non linear regression plot of inverse relative migration of <i>Ct</i>CBM35 (1/r) against polysaccharide concentration (%, w v<sup>−1</sup>), (•) carob galactomannan (in red), (▴) konjac glucomannan (in green) and (•) in presence of 10 mM Ca<sup>2+</sup> ion with carob galactomannan (in light blue), (▴) in presence of 10 mM Ca<sup>2+</sup> ion with konjac glucomannan (in dark blue).

    No full text
    <p>Affinity electrophoresis of <i>Ct</i>CBM35 using 7.5% native PAGE in presence of varying concentrations of (A) carob galactomannan (B) konjac glucomannan (C) 10 mM Ca<sup>2+</sup> incorporated with carob galactomannan (D) 10 mM Ca<sup>2+</sup> incorporated with konjac glucomannan (E) A non linear regression plot of inverse relative migration of <i>Ct</i>CBM35 (1/r) against polysaccharide concentration (%, w v<sup>−1</sup>), (•) carob galactomannan (in red), (▴) konjac glucomannan (in green) and (•) in presence of 10 mM Ca<sup>2+</sup> ion with carob galactomannan (in light blue), (▴) in presence of 10 mM Ca<sup>2+</sup> ion with konjac glucomannan (in dark blue).</p
    corecore