735 research outputs found

    A prospective multicentre study in Sweden and Norway of mental distress and psychiatric morbidity in head and neck cancer patients

    Get PDF
    A Swedish/Norwegian head and neck cancer study was designed to assess prospectively the levels of mental distress and psychiatric morbidity in a heterogeneous sample of newly diagnosed head and neck cancer patients. A total of 357 patients were included. The mean age was 63 years, and 72% were males. The patients were asked to answer the HAD scale (the Hospital Anxiety and Depression scale) six times during 1 year. The number of possible or probable cases of anxiety or depression disorder was calculated according to standardized cut-offs. Approximately one-third of the patients scored as a possible or probable case of a major mood disorder at each measurement point during the study year. There were new cases of anxiety or depression at each time point. The anxiety level was highest at diagnosis, while depression was most common during treatment. Females were more anxious than males at diagnosis, and patients under 65 years of age scored higher than those over 65. Patients with lower performance status and more advanced disease reported higher levels of mental distress and more often scored as a probable or possible cases of psychiatric disorder. Our psychometric analyses supported the two-dimensional structure and stability of the HAD scale. The HAD scale seems to be the method of choice for getting valid information about the probability of mood disorder in head and neck cancer populations. The prevalence of psychiatric morbidity found in this study emphasizes the importance of improved diagnosis and treatment

    Effect of anthropogenic land-use and land cover changes on climate and land carbon storage in CMIP5 projections for the 21st century

    Get PDF
    This is the final version of the article. Available from the American Meteorological Society via the DOI in this record.The effects of land-use changes on climate are assessed using specified-concentration simulations complementary to the representative concentration pathway 2.6 (RCP2.6) and RCP8.5 scenarios performed for phase 5 of the Coupled Model Intercomparison Project (CMIP5). This analysis focuses on differences in climate and land–atmosphere fluxes between the ensemble averages of simulations with and without land-use changes by the end of the twenty-first century. Even though common land-use scenarios are used, the areas of crops and pastures are specific for each Earth system model (ESM). This is due to different interpretations of land-use classes. The analysis reveals that fossil fuel forcing dominates land-use forcing. In addition, the effects of land-use changes are globally not significant, whereas they are significant for regions with land-use changes exceeding 10%. For these regions, three out of six participating models—the Second Generation Canadian Earth System Model (CanESM2); Hadley Centre Global Environmental Model, version 2 (Earth System) (HadGEM2-ES); and Model for Interdisciplinary Research on Climate, Earth System Model (MIROC-ESM)—reveal statistically significant changes in mean annual surface air temperature. In addition, changes in land surface albedo, available energy, and latent heat fluxes are small but significant for most ESMs in regions affected by land-use changes. These climatic effects are relatively small, as land-use changes in the RCP2.6 and RCP8.5 scenarios are small in magnitude and mainly limited to tropical and subtropical regions. The relative importance of the climatic effects of land-use changes is higher for the RCP2.6 scenario, which considers an expansion of biofuel croplands as a climate mitigation option. The underlying similarity among all models is the loss in global land carbon storage due to land-use changes.We acknowledge the World Climate Research Programme Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. We thank Karl Taylor and Charles Doutriaux for help with setting up the CMOR tables for the LUCID–CMIP5 experiments. We appreciate a support by the staff of the German Climate Computing Center (DKRZ), in particular by Stephanie Legutke and Estanislao Gonzalez, in performing the LUCID–CMIP5 simulations and in making the model results available via DKRZ ESG gateway. We thank Andy Pitman and an anonymous reviewer for providing constructive and helpful comments on the manuscript. CDJ was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). EK was supported by the Environmental Research and Technology Development Fund (S-5, S-10) of the Ministry of the Environment, Japan. PF and FP were supported by the EU-FP7 COMBINE project (Grant 226520)

    Single-Session Transcranial Direct Current Stimulation Temporarily Improves Symptoms, Mood, and Self-Regulatory Control in Bulimia Nervosa: A Randomised Controlled Trial

    Get PDF
    BACKGROUND: Evidence suggests that pathological eating behaviours in bulimia nervosa (BN) are underpinned by alterations in reward processing and self-regulatory control, and by functional changes in neurocircuitry encompassing the dorsolateral prefrontal cortex (DLPFC). Manipulation of this region with transcranial direct current stimulation (tDCS) may therefore alleviate symptoms of the disorder. OBJECTIVE: This double-blind sham-controlled proof-of-principle trial investigated the effects of bilateral tDCS over the DLPFC in adults with BN. METHODS: Thirty-nine participants (two males) received three sessions of tDCS in a randomised and counterbalanced order: anode right/cathode left (AR/CL), anode left/cathode right (AL/CR), and sham. A battery of psychological/neurocognitive measures was completed before and after each session and the frequency of bulimic behaviours during the following 24-hours was recorded. RESULTS: AR/CL tDCS reduced eating disorder cognitions (indexed by the Mizes Eating Disorder Cognitions Questionnaire-Revised) when compared to AL/CR and sham tDCS. Both active conditions suppressed the self-reported urge to binge-eat and increased self-regulatory control during a temporal discounting task. Compared to sham stimulation, mood (assessed with the Profile of Mood States) improved after AR/CL but not AL/CR tDCS. Lastly, the three tDCS sessions had comparable effects on the wanting/liking of food and on bulimic behaviours during the 24 hours post-stimulation. CONCLUSIONS: These data suggest that single-session tDCS transiently improves symptoms of BN. They also help to elucidate possible mechanisms of action and highlight the importance of selecting the optimal electrode montage. Multi-session trials are needed to determine whether tDCS has potential for development as a treatment for adult BN

    A blind detection of a large, complex, Sunyaev--Zel'dovich structure

    Get PDF
    We present an interesting Sunyaev-Zel'dovich (SZ) detection in the first of the Arcminute Microkelvin Imager (AMI) 'blind', degree-square fields to have been observed down to our target sensitivity of 100{\mu}Jy/beam. In follow-up deep pointed observations the SZ effect is detected with a maximum peak decrement greater than 8 \times the thermal noise. No corresponding emission is visible in the ROSAT all-sky X-ray survey and no cluster is evident in the Palomar all-sky optical survey. Compared with existing SZ images of distant clusters, the extent is large (\approx 10') and complex; our analysis favours a model containing two clusters rather than a single cluster. Our Bayesian analysis is currently limited to modelling each cluster with an ellipsoidal or spherical beta-model, which do not do justice to this decrement. Fitting an ellipsoid to the deeper candidate we find the following. (a) Assuming that the Evrard et al. (2002) approximation to Press & Schechter (1974) correctly gives the number density of clusters as a function of mass and redshift, then, in the search area, the formal Bayesian probability ratio of the AMI detection of this cluster is 7.9 \times 10^4:1; alternatively assuming Jenkins et al. (2001) as the true prior, the formal Bayesian probability ratio of detection is 2.1 \times 10^5:1. (b) The cluster mass is MT,200 = 5.5+1.2\times 10^14h-1M\odot. (c) Abandoning a physical model with num- -1.3 70 ber density prior and instead simply modelling the SZ decrement using a phenomenological {\beta}-model of temperature decrement as a function of angular distance, we find a central SZ temperature decrement of -295+36 {\mu}K - this allows for CMB primary anisotropies, receiver -15 noise and radio sources. We are unsure if the cluster system we observe is a merging system or two separate clusters.Comment: accepted MNRAS. 12 pages, 9 figure

    Re-education of Tumor-Associated Macrophages by CXCR2 Blockade Drives Senescence and Tumor Inhibition in Advanced Prostate Cancer

    Get PDF
    Tumor-associated macrophages (TAMs) represent a major component of the tumor microenvironment supporting tumorigenesis. TAMs re-education has been proposed as a strategy to promote tumor inhibition. However, whether this approach may work in prostate cancer is unknown. Here we find that Pten-null prostate tumors are strongly infiltrated by TAMs expressing C-X-C chemokine receptor type 2 (CXCR2), and activation of this receptor through CXCL2 polarizes macrophages toward an anti-inflammatory phenotype. Notably, pharmacological blockade of CXCR2 receptor by a selective antagonist promoted the re-education of TAMs toward a pro-inflammatory phenotype. Strikingly, CXCR2 knockout monocytes infused in Ptenpc−/−; Trp53pc−/− mice differentiated in tumor necrosis factor alpha (TNF-α)-releasing pro-inflammatory macrophages, leading to senescence and tumor inhibition. Mechanistically, PTEN-deficient tumor cells are vulnerable to TNF-α-induced senescence, because of an increase of TNFR1. Our results identify TAMs as targets in prostate cancer and describe a therapeutic strategy based on CXCR2 blockade to harness anti-tumorigenic potential of macrophages against this disease. © 2019 The Author(s) Di Mitri et al. show that CXCR2 blockade in prostate cancer triggers TAMs re-education, leading to tumor inhibition. CXCR2-KO monocytes infused in Ptenpc−/−; Trp53pc−/− tumor-bearing mice differentiate into TNFα-releasing pro-inflammatory macrophages that induce senescence in tumor cells. PTEN-null tumors display higher sensitivity to TNF-α-induced senescence because of TNFR1 upregulation

    Renewable energy resource assessment

    Full text link
    © The Author(s) 2019. Literature overview of published global and regional renewable energy potential estimates. This section provides definitions for different types of RE potentials and introduces a new category, the economic renewable energy potential in space constrained environments. The potential for utility scale solar and onshore wind in square kilometre and maximum possible installed capacity (in GW) are provided for 75 different regions. The results set the upper limits for the deployment of solar- and wind technologies for the development of the 2.0 °C and 1.5 °C energy pathways

    Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies

    Get PDF
    sem informaçãoThe epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant91sem informaçãosem informaçãosem informaçã

    Special considerations for studies of extracellular vesicles from parasitic helminths: a community-led roadmap to increase rigour and reproducibility

    Get PDF
    Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved
    • …
    corecore