30 research outputs found

    State of the Nation 2017 : careers and enterprise provision in England’s schools

    Get PDF
    This report describes the careers and enterprise provision in secondary schools in England in the academic year 2016/2017. It is based on responses from 578 secondary schools gathered through the Compass self-assessment tool. It provides the most comprehensive picture of schools’ careers and enterprise provision ever collected and allows us to see how schools are performing in relation to the standard set by the Gatsby Benchmarks. The scope of the data is broadly comparable with data collected as part of the original Gatsby Good Career Guidance research in 2014 allowing us to see how provision has changed over time.The Careers & Enterprise Compan

    Understanding the careers cold spots.

    Get PDF
    This paper sets out our cold spots analysis which provides us with some important insights about how opportunities are organised in England. In the report we examine which areas have: high levels of engagement between schools and employers; young people who are making opportunity informed decisions and achieving positive outcomes in terms of education and employment. We also examine the areas in which young people are most likely to experience substantial barriers. This analysis allows The Careers & Enterprise Company to understand where more career support is needed and to direct our resources towards these areas. We hope that it this analysis will also guide the activities of others working in this space.N/

    Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grass.

    Get PDF
    Copyright: 2013 King et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.Peer reviewedFinal Published versio

    Maximally localized Wannier functions: Theory and applications

    Get PDF
    The electronic ground state of a periodic system is usually described in terms of extended Bloch orbitals, but an alternative representation in terms of localized "Wannier functions" was introduced by Gregory Wannier in 1937. The connection between the Bloch and Wannier representations is realized by families of transformations in a continuous space of unitary matrices, carrying a large degree of arbitrariness. Since 1997, methods have been developed that allow one to iteratively transform the extended Bloch orbitals of a first-principles calculation into a unique set of maximally localized Wannier functions, accomplishing the solid-state equivalent of constructing localized molecular orbitals, or "Boys orbitals" as previously known from the chemistry literature. These developments are reviewed here, and a survey of the applications of these methods is presented. This latter includes a description of their use in analyzing the nature of chemical bonding, or as a local probe of phenomena related to electric polarization and orbital magnetization. Wannier interpolation schemes are also reviewed, by which quantities computed on a coarse reciprocal-space mesh can be used to interpolate onto much finer meshes at low cost, and applications in which Wannier functions are used as efficient basis functions are discussed. Finally the construction and use of Wannier functions outside the context of electronic-structure theory is presented, for cases that include phonon excitations, photonic crystals, and cold-atom optical lattices.Comment: 62 pages. Accepted for publication in Reviews of Modern Physic

    The Importance of pH in Regulating the Function of the Fasciola hepatica Cathepsin L1 Cysteine Protease

    Get PDF
    The helminth parasite Fasciola hepatica secretes cathepsin L cysteine proteases to invade its host, migrate through tissues and digest haemoglobin, its main source of amino acids. Here we investigated the importance of pH in regulating the activity and functions of the major cathepsin L protease FheCL1. The slightly acidic pH of the parasite gut facilitates the auto-catalytic activation of FheCL1 from its inactive proFheCL1 zymogen; this process was ∼40-fold faster at pH 4.5 than at pH 7.0. Active mature FheCL1 is very stable at acidic and neutral conditions (the enzyme retained ∼45% activity when incubated at 37°C and pH 4.5 for 10 days) and displayed a broad pH range for activity peptide substrates and the protein ovalbumin, peaking between pH 5.5 and pH 7.0. This pH profile likely reflects the need for FheCL1 to function both in the parasite gut and in the host tissues. FheCL1, however, could not cleave its natural substrate Hb in the pH range pH 5.5 and pH 7.0; digestion occurred only at pH≤4.5, which coincided with pH-induced dissociation of the Hb tetramer. Our studies indicate that the acidic pH of the parasite relaxes the Hb structure, making it susceptible to proteolysis by FheCL1. This process is enhanced by glutathione (GSH), the main reducing agent contained in red blood cells. Using mass spectrometry, we show that FheCL1 can degrade Hb to small peptides, predominantly of 4–14 residues, but cannot release free amino acids. Therefore, we suggest that Hb degradation is not completed in the gut lumen but that the resulting peptides are absorbed by the gut epithelial cells for further processing by intracellular di- and amino-peptidases to free amino acids that are distributed through the parasite tissue for protein anabolism

    Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia.

    Get PDF
    Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.Funding for the project was provided by the Wellcome Trust for UK10K (WT091310) and DDD Study. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund [grant number HICF-1009-003] - see www.ddduk.org/access.html for full acknowledgement. This work was supported in part by the Intramural Research Program of the National Human Genome Research Institute and the Common Fund, NIH Office of the Director. This work was supported in part by the German Ministry of Research and Education (grant nos. 01GS08160 and 01GS08167; German Mental Retardation Network) as part of the National Genome Research Network to A.R. and D.W. and by the Deutsche Forschungsgemeinschaft (AB393/2-2) to A.R. Brain expression data was provided by the UK Human Brain Expression Consortium (UKBEC), which comprises John A. Hardy, Mina Ryten, Michael Weale, Daniah Trabzuni, Adaikalavan Ramasamy, Colin Smith and Robert Walker, affiliated with UCL Institute of Neurology (J.H., M.R., D.T.), King’s College London (M.R., M.W., A.R.) and the University of Edinburgh (C.S., R.W.)
    corecore