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Abstract

The fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R.
commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly
related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial
morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium
species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas,
and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were
isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new
species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum,
but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from
R. orthosporum ca. 5735 years before the present. Th colonisation all the different Rhynchosporium
species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR
diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.
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Introduction

Leaf blotch (scald) caused by the fungal pathogen Rhynchosporium

commune is an economically important disease of barley (Hordeum

vulgare) crops throughout the world [1] with yield losses of 1–10%

common [2]. United Kingdom (UK) survey data indicates that

barley crops grown in 2005 had 0.6% area with rhynchosporium

lesions on leaf two at growth stage 75 (medium milk development

stage; [3]). This equates to an estimated UK national yield loss of

£10.8 million per annum (at a price of £225/tonne) despite

fungicide treatment [4]. The symptoms of Rhynchosporium coloni-

sation of barley can include coalescing lesions with dark brown

margins and pale green or pale brown centres [5].

Phylogeographical analyses of R. commune isolates obtained from

barley across five continents led to the conclusion that the

pathogen did not emerge in association with its current barley

host, believed to have been first domesticated in the ‘Fertile

Crescent of the Middle East about 10,000 years before the present

[6]. Instead, data from phylogenetic analyses using the R. commune

avirulence gene NIP1 and flanking regions [7] suggested that

modern populations of R. commune originated in northern Europe

approximately 2500–5000 years ago, when the pathogen switched

from a wild grass species onto cultivated barley shortly after barley

was introduced there, and that it subsequently spread into other

barley-growing areas of the world.

The Rhynchosporium pathogen is also found on a number of other

graminaceous hosts, including rye (Secale cereale), triticale (x

Triticosecale), cocksfoot (Dactylis glomerata) and Italian and perennial

ryegrasses (Lolium multiflorum and Lolium perenne, respectively)

[8,9,10,11]. Insights into the evolutionary history of the Rhynch-

osporium pathogen on different hosts were provided by Zaffarano

et al. [12. 13], who used sequencing of several gene loci and host

range testing experiments to demonstrate that the genus

Rhynchosporium is comprised of at least four closely-related, but

host-specialised, species. Three of the species produce conidia

terminating with an oblique point, termed beak-shaped conidia

[14]; (i) R. commune causing leaf blotch symptoms on barley, wall

barley (Hordeum murinum), wild barley (Hordeum spontaneum), barley

grass (Hordeum glaucum, Hordeum leporinum) and brome-grass (Bromus

diandrus); (ii) R. agropyri on bearded couch-grass (Agropyron caninum)

and couch-grass (Agropyron repens); (iii) R. secalis on rye and triticale.

The remaining species R. orthosporum, which is more distantly

related [13], produces cylindrically-shaped conidia [14] and is

specialised on cocksfoot.

One limitation of the studies by Zaffarano et al. [12,13] is that

Rhynchosporium isolates from ryegrasses were not included. These

grasses are both economically important forage grasses and
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commonly occurring weeds of cereal crops on most continents,

and although originally native to Europe, Asia and North Africa

they have now been introduced into almost all temperate countries

of the world [11,15,16]. A previous investigation [11] had

identified two types of Rhynchosporium that could cause leaf blotch

on ryegrasses, with differences between them in conidial shape and

host range. However, it is at present unclear how Rhynchosporium

isolates from ryegrasses are related to the four described fungal

species [13], none of which included ryegrass species in host range

definitions Therefore, there is a need to characterise isolates from

ryegrasses to determine their relatedness to the Rhynchosporium

species of Zaffarano et al. [13]. Such characterisation is essential to

understand any potential role for ryegrass species as a source of

Rhynchosporium inoculum able to initiate leaf blotch epidemics on

barley crops.

Currently, only very limited PCR (polymerase chain reaction)-

based methods are available to distinguish between the four

Rhynchosporium species described by Zaffarano et al. [13]. A

restriction fragment length polymorphism diagnostic was devel-

oped [13] that could discriminate between isolates of R. commune

and R. secalis. However, this test is time-consuming due to the

requirement for an additional restriction digest step following

PCR. Apart from this test, the species can be distinguished only at

a molecular level on the basis of single nucleotide polymorphisms.

The development of species-specific PCR diagnostic tests would

provide a valuable tool to directly confirm species identity of

isolates and to determine species distribution in field samples of

different grass hosts.

Little is currently known about the how the four recently

described Rhynchosporium species of Zaffarano et al. [13] might

differ in the manner by which they colonise their plant hosts. For

example, only R. commune colonisation of barley [17] and R.

orthosporum colonisation of cocksfoot [10] have been the subject of

detailed microscopical investigations. On both hosts, Rhynchospor-

ium hyphae grew extracellularly (i.e. outside the plant cells) and

extensive colonisation of the leaf sub-cuticular area was observed.

Although Caldwell [14] made some observations about the

colonisation strategy of Rhynchosporium on other grass species, no

microscopic evidence is currently available to determine whether

R. agropyri, R. secalis and the pathogen on ryegrasses all colonise the

same sub-cuticular niche of their respective grass hosts.

This paper reports work to further investigate the different

Rhynchosporium species on various grass hosts. Specifically, it uses a

combination of molecular, morphological, pathological and

microscopy approaches to (i) report the discovery of R. commune

isolates that are pathogenic to both barley and Italian ryegrass; (ii)

describe a new species that is specialised only to ryegrass species;

(iii) report results of both microscopic and molecular investigations

into the different host-specialised Rhynchosporium species.

Methods

Ethics Statement
Diseased plant material was collected from plots (permission

obtained from IBERS-Aberystwyth University, NIAB-TAG and

Rothamsted Research, all based in the UK). Diseased plant

material and fungal cultures were imported into the UK under

Defra plant health license number PHL174G/6192(10/2009).

Isolation of the Rhynchosporium Pathogen
Leaves of barley, couch-grass, cocksfoot, Italian ryegrass and

perennial ryegrass with distinct leaf blotch lesions were collected

during the period of 2009–2011 from plots, samples being

collected at least ,1 metre apart within sites. To isolate

Rhynchosporium, leaf blotch lesions were cut from green leaves,

rinsed first in a 70% ethanol (v/v) solution for 2 min, followed by a

10% sodium hypochlorite (v/v) solution (minimum 8% available

chlorine; Fisher Scientific, UK) for 5 min, and finished by a wash

in sterile distilled water for 1 min. Lesions were then dried

between pieces of sterile tissue paper and incubated at 18uC on

Czapek dox plates (Sigma Aldrich, UK) amended to include 0.5%

mycological peptone (Oxoid, UK) and penicillin and streptomycin

sulphate at a final concentration of 100 and 50 parts per million,

respectively. After 3 days, mycelium growing out from lesion

margins was excised and used to establish single conidial cultures

on lima bean agar (LBA; Difco, UK), which were grown at 18uC
for 10 days.

Fungal Isolates Obtained and Long-term Storage
Procedure

A total of 44 Rhynchosporium isolates were obtained from leaves

with leaf blotch lesions collected from five sites in the UK and two

sites in Romania. New isolates collected included 22 isolates from

Italian or perennial ryegrass in the UK, 11 isolates from couch-

grass in Romania and the UK, seven isolates from cocksfoot in the

UK and four isolates from barley in the UK. An additional 49

isolates, including representatives of R. commune, R. agropyri, R.

secalis and R. orthosporum, obtained from international collaborators,

had previously been isolated from various field sites most of which

were throughout Europe. Collaborators included Dr Louise Cooke

(Agri-Food and Biosciences Institute, UK), Dr James Fountaine

(Scotland’s Rural College, UK), Dr Nichola Hawkins (Rothamsted

Research, UK), Dr Wolfgang Knogge (Leibniz Institute of Plant

Biochemistry, Germany) and Prof Bruce McDonald and Dr

Tryggvi Stefansson (ETH Zürich, Switzerland). All isolates were

then stored as silica stocks at 280uC [18].

DNA Extraction
All fungal isolates were revived from 280uC storage by

dispensing small amounts of silica stock onto potato dextrose agar

(PDA, Oxoid, UK) plates overlaid with a single cellulose disk (A.A.

Packaging Ltd, UK). Plates were sealed with a double layer of

parafilm (Pechiney Plastic Packaging, USA) and incubated at 18uC
in the dark for 10–15 days. After this period, fungal mycelium was

scraped from the surface of the overlaid cellulose disk and DNA

was extracted from lyophilized tissue using a DNeasy extraction kit

(Qiagen, UK), according to the manufacturer’s instructions.

RAPD-PCR and Rep-PCR Genomic Fingerprinting
Seventy-nine Rhynchosporium isolates were examined by random

amplification of polymorphic DNA PCR (RAPD-PCR) finger-

printing (Table S1) as described in Murtagh et al. [19], except that

a TC-512 programmable thermal controller (Techne, UK) was

used for all PCR. Seven RAPD-PCR primers (Operon Technol-

ogies, UK; Table S2) were used; in preliminary testing they had

been found to generate polymorphisms with a subset of

Rhynchosporium isolates. No template controls were included for

use with all RAPD-PCR sets and selected isolates from each of the

different species were tested in duplicate to ensure that results were

reproducible. PCR products (10 ml) were separated by gel

electrophoresis on 1.5% agarose gels in 16Tris-Borate-EDTA

(TBE) buffer (National Diagnostics, UK) and stained with an

ethidium bromide solution (200 ml of a 1 mg/ml ethidium

bromide per 100 ml of 16TBE buffer). Amplicons were viewed

on a transilluminator and digital images obtained (Gene Genius

Bio Imaging System, Syngene, Synoptics Ltd, UK). Unambiguous

bands were chosen for scoring and their presence or absence was
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recorded in binary form (1 = present, 0 = absent), with data from

all seven RAPD-PCR primers combined in the analyses. A

neighbour joining analysis was made using Jaccard’s coefficient

and a boot-strapped phylogram (based on 1,000 repeats of the

tree) was produced using FreeTree software [20]. A text version of

the dendrogram of the tree was exported to TreeView software

[21].

Seventy-one Rhynchosporium isolates were examined with repet-

itive-sequence-based PCR (rep-PCR) genomic fingerprinting

(Table S1) using primer pair combinations ERIC2/BOXA1R

and ERICF/BOXA1R [22,23] (Table S2). No template controls

were included for use with both primer pairs and selected isolates

from each of the different species were tested in duplicate to ensure

that results were reproducible. Reactions were carried out in 20 ml

volumes, each containing 10 ml Jumpstart RedTaq mastermix

(Sigma Aldrich, UK), 7 ml sterile distilled water, 1 ml each of both

primers (10 pmol ml21 stock) and 1 ml of template DNA (10 ng).

For testing of five isolates (RS04ITA D-2.2, RS04ITA D-3.1,

RS04ITA D-4.1, RS04ITA D-6.1, RS04ITA D-6.2), 10 ml of

template DNA (total 10 ng) was added (achieved by increasing

overall reaction volumes) because only dilute concentrations of

template DNA were available. PCR was carried out using a PTC-

100 programmable thermal controller (MJ Research, USA) and

reaction conditions were an initial hold at 96uC for 2 min,

followed by 35 cycles of 94uC for 30 sec, 52uC for 1 min and 65uC
for 5 min. PCR products were then analysed as described for

RAPD-PCR products.

Phylogenetic Analyses
Partial sequences of the alpha-tubulin, beta-tubulin and ITS

(internal transcribed spacer) gene loci were obtained for ten

isolates (2lm11, 3ar10, 6ar10 and 10ar10, 59dg09, Rs04ITA D-

6.2, 4lm11, 7lm11, 13lp11 and 15lp11; isolate details and

accompanying GenBank accession numbers provided in Table

S3) using primers (Table S2) and reaction conditions described by

Zaffarano et al. [12]. No template controls were included in

reactions to amplify the three gene loci. Jumpstart high fidelity mix

(Roche, Germany) was used in all reactions, with reaction

components selected according to the manufacturer’s instructions

with the following modifications; no DMSO was included and

each reaction included 10 mM of each dNTP (Fermentas, UK)

and 10–25 ng of template DNA. PCR products were visualised on

a 1% agarose gel to ensure the presence of a single amplicon and

purified using a MinElute kit (Qiagen, UK) according to the

manufacturer’s instructions. DNA was sent to Eurofin MWG

Operon for bi-directional sequencing using an ABI 3730XL

machine, with the exception of the beta-tubulin PCR product for

which only primer BTUB21F was used.

Individual sequences were imported into the BioEdit Sequence

Alignment Editor (version 7.0.9.0; [24]) and trace sequence data of

poor read quality were removed. Sequences were imported into

the Geneious Pro 5.5.6 software package and the partial alpha-

tubulin, beta-tubulin and ITS (partial 18S rRNA, ITS1, 5.8S

rRNA, partial ITS2) sequences were edited to 1538, 542 and 492

bases in length (including gaps), respectively. For the ten isolates

partially sequenced in the present study, sequence data of all three

gene loci were concatenated. The CLUSTAL W algorithm

contained in the Geneious software package was then used to

align these sequences with the concatenated haplotype sequences

of R. commune, R. agropyri, R. secalis and R. orthosporum obtained by

Zaffarano et al. [12].

The relationship of isolates and haplotypes was inferred using

the coalescent-based Bayesian Markov Chain Monte Carlo

(MCMC) method implemented in the program BEAST version

1.4.1 [25]. To allow a direct comparison with previous studies, a

strict molecular clock model was applied and the phylogenetic tree

was internally calibrated by assuming a time-to-most-recent-

common-ancestor (TMRCA) of 2487–4791 years (mean 3625) as

inferred for the cluster R commune/R. agropyri/R. secalis [12]. The

MCMC analysis was run for 107 generations, sampling every

1000th iteration after an initial burn-in of 10%. The performance

of the MCMC process was checked for stationarity and large

effective sample sizes in TRACER (available from http://beast.

bio.ed.ac.uk/Tracer). A maximum clade credibility tree was

constructed after discarding the first 10% of inferred trees. The

mean and corresponding credibility intervals of the estimated

TMRCAs were depicted using TRACER.

Microscopic Analysis of Conidial Morphology
Forty isolates, including isolates of R. commune, R. agropyri, R.

secalis, R. orthosporum or Rhynchosporium isolates collected from

ryegrasses (Table S1), were grown on LBA plates at 15uC in the

dark. After 10 days of growth, sterile distilled water (2 ml) was

added to each LBA plate and conidia were dislodged using an L-

shaped sterile plastic spreader. Conidial suspensions were placed

in sterile 2 ml microfuge tubes after filtration through two layers of

sterile muslin to remove mycelial fragments. Conidial dimensions

of 26 isolates were measured using fresh (within 8 hours of harvest)

conidial suspensions maintained on ice (,0uC), while conidial

suspensions of 18 isolates (including four that were also measured

fresh) were stored at 220uC and measured later. The shape of

individual conidia of individual isolates was recorded as either

beak-shaped or cylindrically-shaped [14]. Both the length and

width of 25 mature (defined as having two cells clearly divided by a

septum) conidia were measured with a digital CCD camera

(Hamamatsu C8484 05G01) using HCimage software (Hama-

matsu Photonics K.K., Japan).

Light microscopic images of representative conidia of 17 isolates

were also made on a Zeiss axiophot light microscope; images were

obtained using a QImaging monochrome camera equipped with a

Retiga XEi liquid crystal RGB filter and operated using

MetaMorph ver. 7.6 software. Before statistical analysis of data,

isolates were separated into two different groups; those with beak-

shaped conidia (R. commune including two isolates from Italian

ryegrass, R. agropyri and R. secalis) and those with cylindrically-

shaped conidia (R. orthosporum and Rhynchosporium isolates from

ryegrasses). Data were analysed using ANOVA (GenStat version

14; [26]).

Host Range Testing
Twenty-two Rhynchosporium isolates (Table 1) were revived from

280uC silica stocks onto LBA plates as described previously in the

text, with plates sealed with a double layer of parafilm and grown

at 18uC in the dark for 10–12 days. Conidia were harvested from

LBA plates as described previously in the text, and concentrations

of suspensions were determined using a haemocytometer (Im-

proved Neubauer haemocytometer, Weber Scientific Internation-

al, UK). Aliquots (5–10 ml) of fungal inoculum (56105 conidia

ml21) were prepared using sterile distilled water (containing 0.01%

Tween 80; Fisher Scientific, UK) in 50 ml Falcon tubes (CellStar,

USA) and frozen at 220uC until required.

All plants were grown and inoculated under controlled

environment conditions, with a constant temperature of 15uC
and a relative humidity of 70%. There was a 12 hour photoperiod

with available light set at 700 mmol m2/sec. Seeds were sown in

Rothamsted prescription mix compost (Petersfield Products, UK)

at approximately 2 cm depth. Before inoculation, barley (cv.

Optic) (14-day-old plants; seed supplied by the Rothamsted farm),
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cocksfoot (35-day-old plants) and both Italian and perennial

ryegrass (35- or 40-day-old plants; seeds supplied by Herbiseed

Ltd., UK) plants were grown individually in pots (4 cm64 cm).

Immediately before inoculation, Falcon tubes containing

Rhynchosporium inoculum were removed from storage at 220uC
and allowed to defrost. Inoculum of each isolate was then

transferred to a separate 20 ml plastic spray bottle. Conidial

suspensions of each isolate were then sprayed onto two replicate

whole plants of each graminaceous host, using a completely

randomised design, until leaves were evenly coated with fine

droplets. Plants were then maintained in a humid environment for

48 h by sealing them in 650–800 mm polyethylene bags (VWR

International Ltd, UK). After this time, the top and bottom of each

polyethylene bag were removed so that plants remained isolated

but open to ambient relative humidity. In the experiments, sterile

distilled water (containing 0.01% Tween 80) was used as a

negative control. At 23 days post inoculation (dpi), whole plants

were assessed for the presence or absence of typical leaf blotch

lesions.

Barley and Italian ryegrass leaves that had been inoculated with

two isolates of R. commune (2lm11 and 5lm11) that had produced

typical leaf blotch lesions on both hosts (or with sterile distilled

water, no lesions) were also examined in duplicate by scanning

electron microscopy (SEM) (21 or 28 dpi as required, see Figure 4

legend).

Colonisation Strategy
Plants of barley, rye, triticale, cocksfoot and Italian ryegrass

were grown and inoculated under the controlled environment

conditions for host range testing, except that leaves of the first

three hosts were all 14-days-old at the time of inoculation and only

the second fully expanded leaves were inoculated. Barley leaves

(cv. Sumo) were inoculated with an isolate of R. commune (53hv09),

rye leaves with an isolate of R. secalis (RS99CH1 H10B), triticale

leaves with an isolate of R. secalis (I-1a), cocksfoot leaves with an

isolate of R. orthosporum (RsCH04 Bär A.1.1.3) and Italian ryegrass

leaves inoculated with an isolate originally collected from this host

(9lm11) (see Table 2 for isolate details). Leaves of all of these

graminaceous hosts with typical leaf blotch lesions were examined

using SEM (14–30 dpi as required; see Figure 5 legend). In

addition, couch-grass leaves colonised by R. agropyri and displaying

typical leaf blotch lesions were also examined by SEM. However,

Table 1. Host range experiments suggest general host-specialisation of Rhynchosporium species.

Development of leaf blotch lesionsa, b

Species Isolate Original host Origin Collected Barleyc Cocksfootd Italian ryegrasse Perennial ryegrasse

R. commune 19hv09 Barley Hertfordshire, UK 2009 + + 2 2 2 2, 2 2 2 2, 2 2

R. commune 53hv09 Barley Hertfordshire, UK 2009 + + 2 2 2 2, 2 2 2 2, 2 2

R. commune 73hv09 Barley Hertfordshire, UK 2009 + + 2 2 2 2, 2 2 2 2, 2 2

R. commune D.1.1 Wall barley Switzerland 2004 + + 2 2 2 2, 2 2 2 2, 2 2

R. commune E.1.2 Wall barley Switzerland 2004 + + 2 2 2 2, 2 2 2 2, 2 2

R. commune 2lm11 Italian ryegrass Shropshire, UK 2011 + + 2 2 2 2,++ 2 2, 2 2

R. commune 5lm11 Italian ryegrass Shropshire, UK 2011 + + 2 2 2 2, 2 + 2 2, 2 2

R. orthosporum 57dg09 Cocksfoot Aberystwyth, UK 2009 2 2 + + 2 2, 2 2 2 2, 2 2

R. orthosporum 59dg09 Cocksfoot Aberystwyth, UK 2009 2 2 2 2 2 2, 2 2 2 2, 2 2

R. orthosporum RsCH04 Bär A.1.1.3 Cocksfoot Switzerland 2004 2 2 + + 2 2, 2 2 2 2, 2 2

R. orthosporum RS04CG-BAR-A.1.1.3 Cocksfoot Switzerland 2004 2 2 + + 2 2, 2 2 2 2, 2 2

R. orthosporum RS04CG-BAR-A.1.1.4 Cocksfoot Switzerland 2004 2 2 + + 2 2, 2 2 2 2, 2 2

R. lolii 6lm11 Italian ryegrass Aberystwyth, UK 2011 2 2 2 2 + 2, 2 2 2 +, 2 2

R. lolii 9lm11 Italian ryegrass Aberystwyth, UK 2011 2 2 2 2 2 2,+2 + 2, 2 2

R. lolii 10lm11 Italian ryegrass Aberystwyth, UK 2011 2 2 2 2 2 +,+2 + 2, 2 2

R. lolii 21lm11 Italian ryegrass Shropshire, UK 2011 2 2 2 2 2 +,++ 2 2, 2 2

R. lolii 22lm11 Italian ryegrass Shropshire, UK 2011 2 2 2 2 + 2, 2 + 2 +, 2 2

R. lolii 11lp11 Perennial ryegrass Aberystwyth, UK 2011 2 2 2 2 + 2,+2 2 +, 2 +

R. lolii 13lp11 Perennial ryegrass Aberystwyth, UK 2011 2 2 2 2 2 2, 2 2 2 2,++

R. lolii 15lp11 Perennial ryegrass Shropshire, UK 2011 2 2 2 2 2 2, 2 2 2 +, 2 2

R. lolii 16lp11 Perennial ryegrass Surrey, UK 2011 2 2 2 2 2 2, 2 2 2 2,++

R. lolii 20lp11 Perennial ryegrass Hertfordshire, UK 2011 2 2 2 2 2 2,+2 2 2, 2 +

n/a Water control n/af n/a n/a 2 2 2 2 2 2, 2 2 2 2, 2 2

Leaf blotch disease symptoms developed at 23 days post inoculation when isolates of Rhynchosporium commune, R. orthosporum or R. lolii were cross-inoculated onto
different hosts under controlled environment conditions.
aWhole plants scored for presence (+) or absence (2) of leaf blotch lesions;
bScores for replicate plants are given;
cPlants 14-days-old at time of inoculation;
dPlants 35-days-old at time of inoculation;
ePlants 35- or 40- days-old at time of inoculation (results separated by a comma);
fn/a, not applicable.
doi:10.1371/journal.pone.0072536.t001
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it had not been possible to produce leaf blotch lesions by

inoculating couch-grass with R. agropyri in controlled environ-

ments, despite the use of isolates from different geographical

origins to inoculate couch grass plants of different ages. Therefore

couch-grass leaf specimens colonised by R. agropyri were collected

from the field in Hertfordshire (UK) in April 2010 and used for

examination.

For SEM, leaves were collected and placed in individual 9 cm

diameter Petri dishes, which were lined with moist filter paper

(Whatman No. 8) and sealed with a single layer of parafilm. Pieces

of leaves, approximately 5 mm65 mm, were cut out using a sterile

razor blade. These were immediately mounted onto aluminium

cryo-stubs using a smear of Tissue-Tek � O.C.T. compound

(Sakura Finetek, USA) and plunged into pre-slushed liquid

nitrogen (2280uC) to freeze them. The samples were then

transferred under vacuum to the Alto 2100 (Gatan, UK) cryo-

chamber stage, with the temperature maintained at 2180uC.

Sublimation of any contaminating ice and gold coating (10 nm

thickness) was done in this chamber. Samples were then

transferred to the stage of the scanning electron microscope

(JSM 6360 LVSEM, Jeol, UK) with the temperature maintained

at 2150uC for examination and imaging using the on-board

software (Jeol, UK).

Species-specific PCR Diagnostic Tests
Four PCR-based diagnostic tests, relying on either sequence

alignments of known genetic loci (ITS and beta-tubulin) and non-

coding nuclear RFLP loci (pRS52; [27]) or using RAPD-PCR

derived sequence, were developed to both detect and distinguish

between isolates of (i) R. commune (including two isolates from

Italian ryegrass), (ii) R. agropyri, (iii) R. secalis, (iv) R. orthosporum and

all other Rhynchosporium isolates obtained from ryegrasses. Primers

(for all sequences see Table S2) were designed using Vector NTI

software (Invitrogen, USA). All PCR reactions were set up on ice

(,0uC) and used a PTC-100 programmable thermal controller

(MJ Research, USA); all testing using these diagnostic tests

included no template controls. PCR products (10 ml) were

separated by gel electrophoresis in 16TBE buffer on 1% agarose

gels. Gels were either stained with ethidium bromide solution as

described previously in the text or incorporated with ethidium

bromide (0.5 mg/ml) during preparation. Amplicons were viewed

on a transilluminator and digital images recorded (Gene Genius

Bio Imaging System, Syngene, Synoptics Ltd, UK).

R. commune-specific primers (LinA-F/R) were designed based on

alignments of partial sequences of the ITS region and were

predicted to produce a 145-bp amplicon specific only for template

DNA of this species. PCR was carried out in 20 ml reaction

volumes, each containing 10 ml RedTaq ReadyMix (26concen-

trate, Sigma Aldrich, UK), 2 ml each of both primers (1 pmol ml21

stock), 5 ml of sterile distilled water and 1 ml of template DNA

(10 ng). Reaction conditions were as follows; 35 cycles of 95uC for

1 min, 66uC for 1 min, 72uC for 1 min before a final elongation

step of 72uC for 5 min, with a final hold at 4uC.

R. agropyri-specific primers (RA6-F/R) were designed based on

alignments of pRS52 sequences [27] and were predicted to

produce a 461-bp amplicon specific only for template DNA of this

species. PCR was carried out in 25 ml reaction volumes, each

containing 12.5 ml of RedTaq ReadyMix (26concentrate, Sigma

Aldrich, UK), 1 ml each of both primers (5 pmol ml21 stock), 9.5 ml

of sterile distilled water and 1 ml of template DNA (10 ng).

Reaction conditions were as follows; 35 cycles of 94uC for 1 min,

55uC for 2 min and 72uC for 2 min before a final elongation step

of 72uC for 5 min, with a final hold at 4uC.

R. secalis-specific primers were developed as sequenced char-

acterised amplified region (SCAR) markers [28]. An amplicon of

,1240-bp was produced specifically for isolates of R. secalis in

RAPD-PCR testing with primer OPW-05. This amplicon was

purified from an agarose gel using a QiaQuick gel extraction kit

(Qiagen, UK) and cloned using a Strataclone PCR cloning kit

(Agilent Technologies, UK). Plasmids with inserts of the correct

size were then purified from cultures using the Fermentas GeneJet

plasmid prep kit (Fermentas, UK) and sent to Eurofins MWG

Operon for bi-directional sequencing using an ABI 3730XL

machine. Resulting sequence data were then used to develop

SCAR-PCR primers by extending the original 10-bp RAPD

primer sequence into the flanking regions. These R. secalis-specific

primers (RS25-F/R) were predicted to produce a 1240-bp

amplicon specific only for template DNA of this species. PCR

was carried out in 25 ml reaction volumes, each containing 12.5 ml

RedTaq ReadyMix (26concentrate, Sigma Aldrich, UK), 1 ml

each of both primers (1 pmol ml21 stock), 9.5 ml of sterile distilled

water and 1 ml of template DNA (10 ng). Reaction conditions were

as follows; 35 cycles of 94uC for 1 min, 57uC for 2 min, 72uC for

2 min before a final elongation step of 72uC for 5 min, with a final

hold at 4uC.

Primers specific for R. orthosporum and most Rhynchosporium

isolates from ryegrasses (2RO-F/R) were designed using align-

ments of partial sequences of the beta-tubulin region and were

predicted to produce a 277-bp amplicon specific for template

DNA of only these two species. PCR was carried out in 25 ml

reaction volumes, each containing 12.5 ml RedTaq ReadyMix

(26concentrate), 1 ml each of both primers (1 pmol ml21 stock),

9.5 ml of sterile distilled water and 1 ml of template DNA (1 ng).

Reaction conditions were as follows; 35 cycles of 94uC for 1 min,

52uC for 1 min, 72uC for 1 min before a final elongation step of

72uC for 5 min, with a final hold at 4uC.

The specificity of all four diagnostic tests was evaluated by

screening them against template DNA from a collection of

Rhynchosporium isolates (Table 2). Specificity of the four tests was

further confirmed by screening against template DNA of other

crop pathogens, including the closely related Pyrenopeziza brassicae

[29], and different plant hosts (e.g. barley) by PCR with the

addition of the appropriate DNA template (in all cases, 10 ng

template DNA was added; Table 2). In addition, the sensitivities of

the four diagnostic tests were evaluated by screening against a total

of 25 ng of mixed template DNA, with different amounts of DNA

of the respective Rhynchosporium species (10 ng, 5 ng, 1 ng, 100 pg,

1 pg, 0 pg) used in a background of corresponding healthy host

plant DNA (15 ng, 20 ng, 24 ng, 24.9 ng, 24.99 ng, 25 ng,

respectively; confirmed to be free of detectable Rhynchosporium

DNA using the quantitative PCR assay of Fountaine et al. [30]

(data not shown). However, in the 20 or 25 ml reaction volume, as

appropriate, 2 ml of template DNA was included by reducing by

1 ml the volume of sterile distilled water. The R. commune test was

evaluated using isolate UK7 [31] in a background of healthy

barley (cv. Sumo) plant template DNA, the R. agropyri test

evaluated using isolate 7ar10 in a background of healthy barley

(cv. Sumo) plant template DNA, the R. secalis test evaluated using

isolate I-1a in a background of healthy rye plant template DNA

and the R. orthosporum/most isolates from ryegrasses test evaluated

using isolate 57dg09 in a background of healthy cocksfoot plant

template DNA.

Finally, a fifth PCR-based test, based on data obtained from the

rep-PCR genomic fingerprinting, was developed to distinguish

between confirmed (using primer pair 2RO-F/R) isolates of R.

orthosporum and most isolates from ryegrasses. Rep-PCR genomic

fingerprinting using primer pair ERIC2/BOXA1R against a
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collection of 71 Rhynchosporium isolates was carried out as described

previously, with these primers predicted to produce an ,400-bp

amplicon for most isolates from ryegrasses but not for isolates of R.

orthosporum.

Nomenclature
The electronic version of this article in Portable Document

Format (PDF) is a work with an ISSN or ISBN number that will

represent a published work according to the International Code of

Nomenclature for algae, fungi, and plants and hence the new

names contained in the electronic publication of a PLOS ONE

article are effectively published under that Code from the

electronic edition alone, so there is no longer any need to provide

printed copies.

In addition, the new name contained in this work has been

submitted to MycoBank (MB 803876) from where it will be made

available to the Global Names Index. The unique MycoBank

number can be resolved and the associated information viewed

through any standard web browser by appending the MycoBank

number contained in this publication to the prefix http://www.

mycobank.org/mb/. The online version of this work is archived

and available from the following digital repositories: PubMed

Central, LOCKSS.

Results

DNA Fingerprint Analysis
Both RAPD-PCR (Fig. 1A) and rep-PCR (Fig. 1B) methodol-

ogies could discriminate between isolates of R. commune, R. agropyri,

R. secalis and R. orthosporum obtained from proximate geographical

origins. Furthermore, in both analyses two distinct types of

Rhynchosporium isolates were found on ryegrasses. Two isolates

(2lm11 and 5lm11) collected from Italian ryegrass clustered within

the main R. commune grouping, forming a terminal clade. However,

all other isolates collected from both Italian and perennial

ryegrasses formed a separate grouping with strong bootstrap

support values (.85% for both DNA fingerprinting methods)

distinct from all the other previously described species of

Rhynchosporium (Figs 1A and 1B), consistent with the presence of

a novel species. This grouping was tentatively named Rhynchospor-

ium lolii, subject to further evidence of speciation that would allow

a formal description (see below). R. orthosporum was the closest sister

species to R. lolii, the latter of which showed an intermixing of

isolates from both Italian and perennial ryegrasses.

DNA Phylogeny and Times to the Most Recent Common
Ancestor (TMRCA)

Bayesian phylogenetic analysis resulted in a tree topology with

strongly supported clusters for all of the previously described

Rhynchosporium species (Fig. 2). The phylogenetic analysis con-

firmed that two distinct Rhynchosporium species had been isolated

from ryegrasses. Isolate 2lm11 was identified as R. commune, while

isolates 4lm11, 7lm11, 13lp11 and 15lp11 grouped distinctly as the

new R. lolii species. As with the previous DNA fingerprint analysis,

R. orthosporum and R. lolii clustered as sister species, clearly

separated from the three other species by a deep phylogenetic split.

Estimates of TMRCA suggested a mean age of 736 years (160–

1464 highest posterior density, HPD) for R. lolii and that it

diverged from R. orthosporum ca. 5735 ybp (4335–7241). This

TMRCA estimate for R. lolii overlaps largely with previous

estimates for R. secalis (566–1922 ybp), R. agropyri (491–2023 ybp)

Figure 1. DNA fingerprinting methods distinguish between five Rhynchosporium species. (A) RAPD-PCR fingerprinting of 79 isolates using
combined data from seven RAPD-PCR primers; (B) rep-PCR genomic fingerprinting of 71 isolates using combined data from two primer pairs (ERIC2/
BOXA1R and ERICF/BOXA1R). Both unrooted trees were constructed by neighbour-joining analyses with branch lengths drawn to show genetic
distance derived from Jaccard’s coefficient of band matching (scale bar: 0.1 = 10% genetic difference). Numbers at nodes indicate the percentage
bootstrap support (based on 1000 re-samplings) for the groupings; only values (A) .60% and (B) .70% are shown, for clarity. Both fingerprinting
methods discriminated between isolates of R. commune (blue), R. agropyri (red), R. secalis (green), R. orthosporum (yellow) and R. lolii (purple). Note
that two isolates of R. commune (2lm11 and 5lm11) were collected from Italian ryegrass.
doi:10.1371/journal.pone.0072536.g001
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and R. commune (775–1952 ybp) by Zaffarano et al. [12] (Figure

S1).

Conidial Morphology
Isolates could be divided into two distinct groups on the basis of

conidial shape. Isolates of R. commune (including isolates 2lm11 and

5lm11 from Italian ryegrass), R. agropyri and R. secalis had beak-

shaped conidia, while isolates of R. orthosporum and the new R. lolii

species group from ryegrass had cylindrically-shaped conidia

(Fig. 3). No statistically significant differences in conidial length

were observed between isolates of R. commune (mean = 16.80 mm,

standard error of the mean = 0.611), R. agropyri (15.41 mm, 0.576)

or R. secalis (15.64 mm, 0.773) (F2,35 = 1.49, P = 0.239). In addition,

no significant differences in conidial width were observed between

isolates of R. commune (2.95 mm, 0.152), R. agropyri (3.30 mm, 0.143)

or R. secalis (3.19 mm, 0.192) (F2,35 = 1.48, P = 0.241). In contrast,

Figure 2. Multilocus phylogeny to determine the evolutionary relationships between five Rhynchosporium species. Phylogenetic
analysis (maximum clade credibility tree) of combined partial sequences of the alpha-tubulin, beta-tubulin and internal transcribed spacer loci show
consistent differences between R. commune, R. agropyri, R. secalis, R. orthosporum and R. lolii. Concatenated haplotype (H) sequences sourced from
Zaffarano et al. [12] were combined with sequence data obtained from individual isolates in the present study. Posterior probabilities are indicated
for major speciation nodes. The asterisk (*) indicates the calibration point used to infer absolute times (ybp; years before present) to the most recent
common ancestor (TMRCA) for these Rhynchosporium species (see also Figure S1).
doi:10.1371/journal.pone.0072536.g002
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statistically significant differences in conidial length were observed

between isolates of R. orthosporum (16.41 mm, 0.611) and R. lolii

(19.36 mm, 0.546); (F1,35 = 12.09, P,0.01). However, no significant

differences in conidial width were observed between isolates of R.

orthosporum (2.92 mm, 0.152) and R. lolii (2.77 mm, 0.136)

(F1,35 = 0.53, P = 0.473). This differentiation in conidial morphol-

ogy between the two groups, i.e. cylindrical vs. beak-shaped, was

consistent with a deep phylogenetic split (see also Fig. 2).

Figure 3. Five Rhynchosporium species divided into two groups by conidial shape. Isolates of R. commune, R. agropyri and R. secalis have
beak-shaped conidia, while isolates of R. orthosporum and R. lolii have cylindrically-shaped conidia. Isolates shown are R. commune (collected from
barley/wall barley) (A-C), R. agropyri (D-F), R. secalis (G-I), R. orthosporum (J-L), R. lolii (M-O) and R. commune (from Italian ryegrass) (P,Q). Isolates shown
are (A-Q): 19hv09, D.1.1, E.1.2, 4ar10, 8ar10, Rs04CH Rac A.6.1, 1D4a, Rs02CH4-6a.1, I-3a1, 27dg09, 57dg09, RsCH04 Bär A.1.1.3, 12lp11, 20lp11, 22lm11,
2lm11, 5lm11. Scale bars are 20 mm.
doi:10.1371/journal.pone.0072536.g003
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Host Range Testing
At 23 dpi under controlled environment conditions, five isolates

of R. commune produced leaf blotch symptoms on barley (cv. Optic)

but not on cocksfoot or ryegrasses. Likewise, four out of five

isolates of R. orthosporum produced leaf blotch lesions only on

cocksfoot but not on barley or ryegrasses (Table 1).

However, isolates collected from ryegrasses showed two distinct

host range profiles (Table 1). Firstly, two isolates of R. commune

collected from Italian ryegrass caused leaf blotch symptoms

(Fig. 4A, B, E, F) on both barley (cv. Optic) and Italian ryegrass

(although no disease symptoms developed on perennial ryegrass);

by 23 dpi, both hosts showed extensive leaf blotch symptoms and

total cell collapse was observed (Table 1). When examined with

scanning electron microscopy, leaves of both barley (21 dpi) and

Italian ryegrass (28 dpi) were extensively colonised by sub-

cuticular hyphae (Fig. 4C, D, G, H). Moreover, beak-shaped

conidia were observed (Fig. 4C, D, H) erupting through the leaf

cuticle of both hosts (although no sporulation was observed on

Italian ryegrass leaves inoculated with isolate 5lm11; Fig. 4G).

Secondly, ten isolates of R. lolii obtained from either Italian or

perennial ryegrass produced leaf blotch lesions only on ryegrasses

and not on barley or cocksfoot (Table 1). Some isolates of R. lolii

produced leaf blotch symptoms on both Italian and perennial

ryegrass; therefore, there was no evidence for specialisation

between these hosts.

Colonisation Strategy
Scanning electron microscopy results showed that isolates of R.

commune on barley (Fig. 5A), R. agropyri on couch-grass (Fig. 5B), R.

secalis on rye (Fig. 5C), R. secalis on triticale (Fig. 5D), R. orthosporum

on cocksfoot (Fig. 5E) and R. lolii on Italian ryegrass (Fig. 5F) all

colonised their respective hosts in a similar manner. In all of these

pathosystems, clear evidence was found for extracellular growth of

the pathogen, with extensive, branching hyphae colonising the

sub-cuticular area of the host leaf tissue. In addition, sub-cuticular

hyphal growth was also observed on most of these hosts on areas of

leaf tissue with no visible leaf blotch symptoms, i.e. there was

evidence of asymptomatic colonisation surrounding lesions (data

not shown).

Species-specific PCR Diagnostic Tests
Species-specific endpoint PCR diagnostic tests were developed

to detect and distinguish between isolates of (i) R. commune, (ii) R.

agropyri, (iii) R. secalis and (iv) R. orthosporum/R. lolii. Multiple

alignments of known genetic loci were made (or RAPD-PCR

derived sequence used) and a series of different primer pairs were

designed with the theoretical ability to discriminate between

species due to sequence divergence at the 39 end and/or within the

primers. Many of these primer pairs failed to discriminate

sufficiently between species, with false positives produced in some

reactions (data not shown). However, a subset of these primer pairs

consistently discriminated between the Rhynchosporium species.

These diagnostic primers were evaluated by screening against a

set of Rhynchosporium isolates representing the different species from

proximate geographical origins (Table 2). The R. commune

diagnostic test (primer set LinA-F/R) unambiguously produced

the predicted amplicon of 145-bp (Fig. 6A) only with 10 ng

template DNA from R. commune isolates. However, it is noted that

an extremely faint and ambiguous PCR signal was produced for a

single isolate of R. agropyri (RS04CG-RAC-A.4.3); no signal was

detected when the PCR was repeated with only 34 cycles (data not

shown). The R. agropyri test (RA6-F/R) produced the predicted

461-bp (Fig. 6B) amplicon only with 10 ng template DNA from R.

Figure 4. R. commune isolates that cause leaf blotch lesions on both Italian ryegrass and barley. Isolate 2lm11 caused lesions (L) when
inoculated onto (A) Italian ryegrass or (B) barley (cv. Optic) leaves; scanning electron microscopic (SEM) examination of these hosts (C, D) showed sub-
cuticular hyphae (H) and sporulation with beak-shaped conidia (C) on both hosts. Isolate 5lm11 also caused lesions on both Italian ryegrass (E) and
barley (F); SEM examination showed that the pathogen could colonise both hosts (G, H) and sporulation with beak-shaped conidia was observed on
barley. Control leaves of Italian ryegrass and barley treated with water (I, J) did not develop leaf blotch symptoms and SEM examination (K, L) found
no evidence for the presence of R. commune. Photographs of leaf symptoms were taken at 17 (B, F, J) and 24 (A, E, I) days post inoculation (dpi);
electron micrographs were taken at 21 (D, H, L) and 28 (C, G, H) dpi. All leaf pieces were c. 4 cm long; scale bars on electron micrographs are 10 mm.
doi:10.1371/journal.pone.0072536.g004
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agropyri isolates, while the R. secalis test (RS25-F/R) produced the

predicted 1240-bp (Fig. 6C) amplicon only with 10 ng template

DNA from R. secalis isolates. The R. orthosporum/R. lolii test (2RO-

F/R) produced the predicted 277-bp (Fig. 6D) amplicon only with

1 ng template DNA from isolates of these two species; in addition,

no amplicons were produced when this test was further screened

against 10 ng template DNA from representative isolates of R.

commune, R. agropyri and R. secalis (data not shown). None of the four

species-specific diagnostic tests detected 10 ng template DNA of

either plant host or other fungal pathogens. These included five

other pathogens of crops (Table 2), including the closely related P.

brassicae [29].

Sensitivity testing, using mixed amounts of fungal/host plant

DNA (25 ng template DNA in total), demonstrated that each of

these four diagnostic tests were specific to their respective

Rhynchosporium species in a background of host plant DNA, and

that the sensitivity of each diagnostic test to the target species

template DNA differed as follows; the R. commune test was by far

the least sensitive test and required ,2.5 ng, the R. orthosporum/R.

lolii test required 1 ng and both the R. agropyri and R. secalis tests

required 1 pg (data not shown).

Finally, the fifth rep-PCR genomic fingerprinting based

diagnostic (using primer pair ERIC2/BOXA1R) was also

developed; this produced an amplicon of ,400-bp for isolates of

R. lolii but not for isolates of R. orthosporum (Table 2; Fig. 6E).

Therefore, when this test was used in combination with the R.

orthosporum/R. lolii endpoint diagnostic test (Table 2; Fig 6D), these

two species could readily be distinguished from each other.

Taxonomy
Results described above provided clear evidence for the

presence of a new species of Rhynchosporium, based on combined

molecular, morphological and host specialisation data. Therefore,

the new species, Rhynchosporium lolii, is now formally described:

Rhynchosporium lolii King, West, Brunner, Dyer and Fitt sp. nov.

[urn:lsid:mycobank.org:names:803876] Etymology: Referring to

the host genus, i.e. Lolium.

Type: UK: Shropshire: Newport, isolated from Lolium perenne

leaves, May 2011, Collector: Kevin M. King; 15lp11 (IMI

502640– holotype (dried culture); CBS 135745 and IMI

502640– ex-holotype cultures).

Rhynchosporium lolii is genetically most closely related to

Rhynchosporium orthosporum, and both species have conidia that are

erect, cylindrically shaped and medianly septate. Conidia of R. lolii

have a mean length of 19.36 mm and width of 2.77 mm; they are

statistically significantly longer than those of R. orthosporum. The

two species can be distinguished by the following fixed nucleotide

differences between R. lolii and R. orthosporum (presented as the

gene and the nucleotide characters fixed in R. lolii in parenthesis,

based on numbering of the partial sequences deposited in

GenBank in the present study); alpha-tubulin positions 85 (G),

100 (T), 499 (G); beta-tubulin position 309 (A). PCR amplification

with primer pair 2RO-F/R produces an amplicon of 277 base

pairs for both R. lolii and R. orthosporum, but amplification with rep-

PCR genomic fingerprinting primer pair ERIC2/BOXA1R

produces an amplicon of approximately 400 base pairs specifically

for R. lolii. R. lolii causes leaf blotch lesions on ryegrass species but

not on cocksfoot or barley.

Discussion

This work provides the first conclusive evidence for the

occurrence of both R. commune and a new species, R. lolii, on

ryegrasses in the UK. Two Rhynchosporium isolates from Italian

ryegrass (2lm11 and 5lm11) clustered within the main R. commune

species group according to both DNA fingerprinting and sequence

data. However, in both RAPD-PCR and rep-PCR genomic

fingerprinting the two isolates formed a terminal clade with strong

bootstrap support. It is unclear whether this was an artefact

because these isolates originated from the same geographic

location, or whether there was some genuine difference between

R. commune isolates occurring on ryegrasses and those on barley.

In addition, the confirmed R. commune isolates from Italian

ryegrass both had beak-shaped conidia and could colonise, cause

Figure 5. Five Rhynchosporium species colonise the same sub-cuticular niche in their hosts. Sub-cuticular hyphal (H) growth of (A) R.
commune (isolate 53hv09) at 28 days post inoculation (dpi) on a leaf of barley (cv. Sumo); (B) R. agropyri on a leaf of couch-grass collected from the
field (Hertfordshire, UK) in April 2010; (C) R. secalis (RS99CH1 H10B) at 30 dpi on a leaf of rye; (D) R. secalis isolate (I-1a) at 28 dpi on a leaf of triticale;
(E) R. orthosporum (RsCH04 Bär A.1.1.3) at 14 dpi on a leaf of cocksfoot; (F) R. lolii (9lm11) at 28 dpi on a leaf of Italian ryegrass. Scale-bars on electron
micrographs are 10 mm.
doi:10.1371/journal.pone.0072536.g005
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leaf blotch symptoms and sporulate on both Italian ryegrass and

barley (cv. Optic). These data support previous work by Wilkins

[11], where some Rhynchosporium isolates were collected from

Italian ryegrass that could cause disease symptoms on both this

host and barley. However, it is noted that data in both the present

and previous study [11] suggest that isolates of R. commune collected

from barley do not appear to cause leaf blotch symptoms on

Italian ryegrass. Nevertheless, we propose that the species

description for R. commune [13] be amended to include Italian

ryegrass as an additional host species.

The second species, R. lolii, occurred widely on ryegrasses in

England and Wales. This new species was most closely related to

R. orthosporum and these two sister species had cylindrically-shaped

conidia, unlike other species of Rhynchosporium. However, all of the

molecular approaches used revealed consistent differences be-

tween R. lolii and R. orthosporum. There was therefore sufficient

phylogenetic evidence for the identification and description of the

new species R. lolii. Such molecular phylogenetic evidence is now

being used routinely to define new species of filamentous fungi and

yeasts [32,13,33,34,35] because strongly supported molecular

divergence between taxa, especially when based on multiple gene

genealogies, indicates a lack of gene flow consistent with speciation

events [36,37,38].

Figure 6. PCR-based diagnostic tests to distinguish between five Rhynchosporium species. Five primer pairs (LinA-F/R; RA6-F/R; RS25-F/R;
2RO-F/R; ERIC2/BOXA1R) were tested with representative isolates of R. commune (lanes 1–3; K1124, QUB 12-3, OSA 28-2-2), R. agropyri (lanes 4–6;
RS04CG-RAC-A.6.1, 6ar10, 10ar10), R. secalis (lanes 7–9; RS99CH1 H10B, E7a, I-1a), R. orthosporum (lanes 10–13; 27dg09, RS04CG-BAR-A.1.1.4, RS04ITA
D-4.1) or R. lolii (lanes 13–15; 1lm11, 9lm11 and 18lp11). (A) LinA-F/R produced a 145-base pair (bp) amplicon specific for R. commune isolates; (B) RA6-
F/R produced a 461-bp amplicon specific for R. agropyri isolates; (C) RS25-F/R produced a 1240-bp amplicon specific for R. secalis isolates; (D) 2ROR-F/
R produced a 277-bp amplicon specific for both R. orthosporum and R. lolii isolates; use of rep-PCR genomic fingerprinting primers ERIC2/BOXA1R
produced a ,400-bp amplicon specific only for isolates of R. lolii. Different isolates are displayed in (B, C) lanes 1–3: FI12-63, QUB 9-10, 2lm11; (D)
lanes 1–15:19hv09, UK7, 2lm11, 10ar10, 6ar10, RS04CG-RAC-A.6.1, RS02CH4-4b1, RS02CH4-14a1, 6.2, 27dg09, RS04CG-BAR-A.1.1.4, RS04ITA D-4.1,
9lm11, 14lp11 and 18lp11; (E) lanes 3, 6 and 14:2lm11, 1ar10 and 8lm11, respectively. Note that in (A) lanes 1–3 have been inserted from a different
gel image. Lane labelled ‘L’ contains a 100-bp ladder (A, B, D) or a 1-kilobase ladder (C, E) (both Fermentas, UK); lane 16 is a no template control.
doi:10.1371/journal.pone.0072536.g006
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The new species R. lolii could also be distinguished on the basis

of morphological differences, since it had cylindrically-shaped

conidia that were typically longer than those of R. orthosporum.

Furthermore, host range testing demonstrated that isolates of R.

lolii caused leaf blotch symptoms only on ryegrass species whereas

isolates of R. orthosporum caused leaf blotch symptoms only on

cocksfoot. The occurrence of these host-specialised Rhynchosporium

species is similar to that for other plant pathogen genera, for

example Zymoseptoria and Colletotrichum that both include several

species that are specialised to different wild and cultivated (cereal)

grasses [34,39].

Isolates of R. orthosporum and R. lolii from proximate geograph-

ical origins could also be distinguished by the new PCR-based

diagnostic tests. The divergence of the two species was supported

by results from a molecular clock model implemented in BEAST

[25], which suggested that R. lolii diverged from R. orthosporum ca.

5735 ybp (range 4335–7241 ybp). Moreover, the TMRCA

estimate of a mean age of 736 years (160–1464 HPD) for R. lolii

largely overlaps with previous estimates for other Rhynchosporium

species, suggesting independent speciation events during the same

period [12].

This study has therefore clarified the identity of Rhynchosporium

species occurring on ryegrasses, which are both economically

important forage grasses and commonly occurring weeds of cereal

crops throughout the world [11,40,15,16]. These findings will be

of practical use to both farmers and breeders, for example when

considering the use of cocksfoot and ryegrass species as forage

grasses [11]. Furthermore, these data suggest that ryegrasses could

potentially be a reservoir of R. commune inoculum able to initiate

barley leaf blotch epidemics. Similar roles for wild grasses as

potential sources of inoculum have been suggested previously for

the wheat pathogens Pyrenophora tritici-repentis (cause of tan spot),

Oculimacula yallundae (synonym Tapesia yallundae, cause of eyespot)

and Colletotrichum species (cause of anthracnose disease) [41,42,39].

Further work is now required to investigate the worldwide

frequency and distribution of R. commune on ryegrass species.

This work has also demonstrated that all five Rhynchosporium

species colonise their respective hosts in a very similar manner

morphologically, with extensive hyphal growth observed in the

sub-cuticular region of the leaves of all host species. It provides the

first SEM evidence of morphological events relating to the

colonisation strategy of R. agropyri on couch-grass, R. secalis on

rye and triticale and R. lolii on Italian ryegrass. Few plant

pathogenic fungi are known to grow in the sub-cuticular region,

although other pathogens known to exploit this niche include

Diplocarpon rosae (cause of blackspot) on roses (Rosa spp.) [43] and P.

brassicae (cause of light leaf spot) on oilseed rape (Brassica napus)

[44,45]. Increased opportunities for horizontal gene transfer

between these species due to occupation of the same sub-cuticular

niche could have impacts on both disease emergence and

metabolic capabilities [46].

Finally, the present study has developed the first endpoint PCR

diagnostic tests that can directly detect and distinguish between

isolates of R. commune, R. agropyri, R. secalis and R. orthosporum

[14,13]. However, the test developed for R. orthosporum also

detected isolates of R. lolii; therefore an additional rep-PCR

genomic fingerprinting based test was developed that distinguished

these two sister species from each other. Rapid, simple and cheap

diagnostic tests to distinguish between all these host-specialised

Rhynchosporium species will benefit breeders, farmers and research-

ers because leaf blotch is a serious disease of barley crops across

the world, especially in areas with cool temperate climates [1].

Moreover, leaf blotch is also an important disease of rye, triticale,

cocksfoot and ryegrasses [8,9,10,11]. These diagnostic tests may be

of use in the detection of asymptomatic colonisation by these

Rhynchosporium species on their respective hosts, such as has been

observed on barley [47] and other grass hosts (present study). In

addition, they will also complement PCR-based tests for other

pathogens, such as Ramularia collo-cygni [48], an emerging pathogen

of barley crops in northern Europe and New Zealand [49].
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