227 research outputs found

    Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia

    Get PDF
    Exosomes are membrane-bound vesicles found in all biological fluids. AML patients' plasma collected at diagnosis contains elevated exosome levels relative to normal donor (ND) plasma. The molecular profile of AML exosomes changes in the course of therapy and may serve as a measure of disease progression or response to therapy. However, plasma contains a mix of exosomes derived from various cell types. To be able to utilize blast-derived exosomes as biomarkers for AML, we have developed an immunoaffinity-based capture method utilizing magnetic microbeads coated with anti-CD34 antibody (Ab). This Ab is specific for CD34, a unique marker of AML blasts. The capture procedure was developed using CD34+ exosomes derived from Kasumi-1 AML cell culture supernatants. The capture capacity of CD34microbeads was shown to linearly correlate with the input exosomes. A 10 uL aliquot of CD34 microbeads was able to capture all of CD34+ exosomes present in 100-1,000 uL of AML plasma. The levels of immunocaptured CD34+ exosomes correlated with the percentages of CD34+ blasts in the AML patients' peripheral blood. The immunocaptured exosomes had a typical cup-shaped morphology by transmission electron microscopy, and their molecular cargo was similar to that of parental blasts. These exosomes were biologically-active. Upon co-incubation with natural killer (NK) cells, captured blast-derived exosomes down-regulated surface NKG2D expression, while non-captured exosomes reduced expression levels of NKp46. Our data provide a proof-of-principle that blast-derived exosomes can be quantitatively recovered from AML patients' plasma, their molecular profile recapitulates that of autologous blasts and they retain the ability to mediate immune suppression. These data suggest that immunocaptured blast-derived exosomes might be useful in diagnosis and/or prognosis of AML in the future. © 2014 Hong et al

    Differential expression of tissue transglutaminase during in vivo apoptosis of thymocytes induced via distinct signalling pathways

    Get PDF
    AbstractA significant increase in the expression and activity of tissue transglutaminase (tTG), one of the effector elements of apoptosis, was observed during involution of thymus elicited by treatment with either anti-CD3 antibody or dexamethasone or by irradiation. The blood plasma concentration of ϵ(γ-glutamyl)lysine isodipeptide, the end-product of the digestion of transglutaminase cross-linked proteins, was also elevated in each of these cases. tTG was localized in cells of the cortical layer of the thymus and immunofluorescence double staining revealed that the enzyme appeared in the apoptotic cells. None of these observations could be made when apoptosis was induced by fas-receptor stimulation. The lack of tTG activity in fas-stimulated cells was accompanied with a less organized apoptotic morphology. Our data suggest that distinct signalling pathways, which induce apoptosis within the same cell type, can differentially regulate the expression of tTG, and this enzyme may be involved in structural stabilization of the apoptotic cells.© 1997 Federation of European Biochemical Societies

    First-in-human study of JNJ-63709178, a CD123/CD3 targeting antibody, in relapsed/refractory acute myeloid leukemia

    Get PDF
    Targeting antibody; Acute myeloid leukemiaAnticòs dirigit; Leucèmia mieloide agudaAnticuerpo dirigido; Leucemia mieloide agudaThis study aimed to identify a recommended phase II dose and evaluate the safety, tolerability, pharmacokinetics/pharmacodynamics, and preliminary clinical activity of JNJ-63709178, a CD123/CD3 dual-targeting antibody, in patients with relapsed or refractory acute myeloid leukemia. Intravenous (i.v.) and subcutaneous (s.c.) administration of JNJ-63709178 were evaluated. The i.v. infusions were administered once every 2 weeks (cohorts 1–5 [n = 17]) or twice weekly (cohorts 6–11 [n = 36]). A twice-weekly s.c. dosing regimen with step-up dosing was also studied (s.c. cohorts 1–2 [n = 9]). Treatment-emergent adverse events (TEAEs) greater than or equal to grade 3 were observed in 11 (65%) patients in cohorts 1–5 and 33 (92%) patients in cohorts 6–11. At the highest i.v. dose (4.8 μg/kg), 5 (71%) patients discontinued treatment due to TEAEs. For s.c. administration (n = 9), eight (89%) patients experienced TEAEs greater than or equal to grade 3 and injection site reactions (≤ grade 3) emerged in all patients. At 4.8 μg/kg (i.v. and s.c.), the mean maximum serum concentrations were 30.3 and 3.59 ng/ml, respectively. Increases in multiple cytokines were observed following i.v. and s.c. administrations, and step-up dosing strategies did not mitigate cytokine production or improve the safety profile and led to limited duration of treatment. Minimal clinical activity was observed across all cohorts. The i.v. and s.c. dosing of JNJ-63709178 was associated with suboptimal drug exposure, unfavorable safety profiles, limited clinical activity, and inability to identify a recommended phase II dose.This work was supported by Janssen Research and Development, LLC

    Biologically-active exosomes in plasma of AML patients inhibit innate immunity and promote leukemia progression

    Get PDF
    AML patients are reported to have impairments of immune cells which contribute to leukemia progression. Tumor-derived exosomes (TEX) have recently emerged as carriers of the molecular and genetic cargo with potent immunosuppressive properties. We showed that plasma of newly-diagnosed AML patients prior to any therapy contained high levels of exosomal proteins relative to those in plasma of normal donors (NC). AML exosomes were enriched in membrane-associated TGF-β1, MICA/MICB and markers of myeloid blasts. We hypothesize that these plasma-derived virus-size (30-100nm) membrane-bound vesicles operating in AML deliver suppressive signals to immune cells and thus may promote leukemia progression

    The Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of acute leukemia.

    Get PDF
    Acute leukemia is a constellation of rapidly progressing diseases that affect a wide range of patients regardless of age or gender. Traditional treatment options for patients with acute leukemia include chemotherapy and hematopoietic cell transplantation. The advent of cancer immunotherapy has had a significant impact on acute leukemia treatment. Novel immunotherapeutic agents including antibody-drug conjugates, bispecific T cell engagers, and chimeric antigen receptor T cell therapies have efficacy and have recently been approved by the US Food and Drug Administration (FDA) for the treatment of patients with acute leukemia. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop a clinical practice guideline composed of consensus recommendations on immunotherapy for the treatment of acute lymphoblastic leukemia and acute myeloid leukemia

    Lymphocyte Subpopulations in Lymph Nodes and Peripheral Blood: A Comparison between Patients with Stable Angina and Acute Coronary Syndrome

    Get PDF
    Objective: Atherosclerosis is characterized by a chronic inflammatory response involving activated T cells and impairment of natural killer (NK) cells. An increased T cell activity has been associated with plaque instability and risk of acute cardiac events. Lymphocyte analyses in blood are widely used to evaluate the immune status. However, peripheral blood contains only a minor proportion of lymphocytes. In this study, we hypothesized that thoracic lymph nodes from patients with stable angina (SA) and acute coronary syndrome (ACS) might add information to peripheral blood analyses. less thanbrgreater than less thanbrgreater thanMethods: Peripheral blood and lymph nodes were collected during coronary by-pass surgery in 13 patients with SA and 13 patients with ACS. Lymphocyte subpopulations were assessed by flow cytometry using antibodies against CD3, CD4, CD8, CD19, CD16/56, CD25, Foxp3, CD69, HLA-DR, IL-18 receptor (R) and CCR4. less thanbrgreater than less thanbrgreater thanResults: Lymph nodes revealed a lymphocyte subpopulation profile substantially differing from that in blood including a higher proportion of B cells, lower proportions of CD8(+) T cells and NK cells and a 2-fold higher CD4/CD8 ratio. CD4(+)CD69(+) cells as well as Foxp3(+) regulatory T cells were markedly enriched in lymph nodes (p andlt; 0.001) while T helper 1-like (CD4(+)IL-18R(+)) cells were more frequent in blood (p andlt; 0.001). The only significant differences between ACS and SA patients involved NK cells that were reduced in the ACS group. However, despite being reduced, the NK cell fraction in ACS patients contained a significantly higher proportion of IL-18R(+) cells compared with SA patients (p andlt; 0.05). less thanbrgreater than less thanbrgreater thanConclusion: There were several differences in lymphocyte subpopulations between blood and lymph nodes. However, the lymphocyte perturbations in peripheral blood of ACS patients compared with SA patients were not mirrored in lymph nodes. The findings indicate that lymph node analyses in multivessel coronary artery disease may not reveal any major changes in the immune response that are not detectable in blood.Funding Agencies|Swedish Heart-Lung Foundation|20090489|Swedish Research Council|2008-2282

    First-in-human study of JNJ-63709178, a CD123/CD3 targeting antibody, in relapsed/refractory acute myeloid leukemia

    Get PDF
    This study aimed to identify a recommended phase II dose and evaluate the safety, tolerability, pharmacokinetics/pharmacodynamics, and preliminary clinical activity of JNJ-63709178, a CD123/CD3 dual-targeting antibody, in patients with relapsed or refractory acute myeloid leukemia. Intravenous (i.v.) and subcutaneous (s.c.) administration of JNJ-63709178 were evaluated. The i.v. infusions were administered once every 2 weeks (cohorts 1-5 [n = 17]) or twice weekly (cohorts 6-11 [n = 36]). A twice-weekly s.c. dosing regimen with step-up dosing was also studied (s.c. cohorts 1-2 [n = 9]). Treatment-emergent adverse events (TEAEs) greater than or equal to grade 3 were observed in 11 (65%) patients in cohorts 1-5 and 33 (92%) patients in cohorts 6-11. At the highest i.v. dose (4.8 μg/kg), 5 (71%) patients discontinued treatment due to TEAEs. For s.c. administration (n = 9), eight (89%) patients experienced TEAEs greater than or equal to grade 3 and injection site reactions (≤ grade 3) emerged in all patients. At 4.8 μg/kg (i.v. and s.c.), the mean maximum serum concentrations were 30.3 and 3.59 ng/ml, respectively. Increases in multiple cytokines were observed following i.v. and s.c. administrations, and step-up dosing strategies did not mitigate cytokine production or improve the safety profile and led to limited duration of treatment. Minimal clinical activity was observed across all cohorts. The i.v. and s.c. dosing of JNJ-63709178 was associated with suboptimal drug exposure, unfavorable safety profiles, limited clinical activity, and inability to identify a recommended phase II dose.This work was supported by Janssen Research and Development, LLC.Peer reviewe

    The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

    Get PDF
    Increasing knowledge concerning the biology of hematologic malignancies as well as the role of the immune system in the control of these diseases has led to the development and approval of immunotherapies that are resulting in impressive clinical responses. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a hematologic malignancy Cancer Immunotherapy Guidelines panel consisting of physicians, nurses, patient advocates, and patients to develop consensus recommendations for the clinical application of immunotherapy for patients with multiple myeloma, lymphoma, and acute leukemia. These recommendations were developed following the previously established process based on the Institute of Medicine’s clinical practice guidelines. In doing so, a systematic literature search was performed for high-impact studies from 2004 to 2014 and was supplemented with further literature as identified by the panel. The consensus panel met in December of 2014 with the goal to generate consensus recommendations for the clinical use of immunotherapy in patients with hematologic malignancies. During this meeting, consensus panel voting along with discussion were used to rate and review the strength of the supporting evidence from the literature search. These consensus recommendations focus on issues related to patient selection, toxicity management, clinical endpoints, and the sequencing or combination of therapies. Overall, immunotherapy is rapidly emerging as an effective therapeutic strategy for the management of hematologic malignances. Evidence-based consensus recommendations for its clinical application are provided and will be updated as the field evolves
    • …
    corecore