268 research outputs found

    Investigation of the obscure spin state of Ti-doped CdSe

    Get PDF
    Using computational and experimental techniques, we examine the nature of the 2+ oxidation of Ti-doped CdSe. Through stoichiometry and confirmed through magnetization measurements, the weakly-doped material of Cd1-xTixSe (x = 0.0043) shows the presence of a robust spin-1 magnetic state of Ti, which is indicative of a 2+ oxidation state. Given the obscure nature of the Ti2+ state, we investigate the electronic and magnetic states using density functional theory. Using a generalized gradient approximation with an onsite potential, we determine the electronic structure, magnetic moment density, and optical properties for a supercell of CdSe with an ultra-low concentration of Ti. We find that, in order to reproduce the magnetic moment of spin-1, an onsite potential of 4-6 eV must be in included in the calculation. Furthermore, the electronic structure and density of states shows the presence of a Ti-d impurity band above the Fermi level and a weakly metallic state for a U = 0 eV. However, the evolution of the electronic properties as a function of the Hubbard U shows that the Ti-d drop below the Fermi around 4 eV with the onset of a semiconducting state. The impurity then mixes with the lower valence bands and produces the 2+ state for the Ti atom

    The [OIII]λ5007\lambda5007 equivalent width distribution at z 2\sim2: The redshift evolution of the extreme emission line galaxies

    Full text link
    We determine the [OIII]λ5007\lambda5007 equivalent width (EW) distribution of 1.700<z<2.2741.700<\rm{z}<2.274 rest-frame UV-selected (MUV<19_{\rm{UV}}<-19) star-forming galaxies in the GOODS North and South fields. We make use of deep HDUV broadband photometry catalogues for selection and 3D-HST WFC3/IR grism spectra for measurement of line properties. The [OIII]λ5007\lambda5007 EW distribution allows us to measure the abundance of extreme emission line galaxies (EELGs) within this population. We model a log-normal distribution to the [OIII]λ5007\lambda5007 rest-frame equivalent widths of galaxies in our sample, with location parameter μ=4.24±0.07\mu=4.24\pm0.07 and variance parameter σ=1.33±0.06\sigma= 1.33\pm0.06. This EW distribution has a mean [OIII]λ5007\lambda5007 EW of 168±1A˚\pm1\r{A}. The fractions of z2\rm{z}\sim2 rest-UV-selected galaxies with [OIII]λ5007\lambda5007 EWs greater than 500,750500, 750 and 1000A˚1000\r{A} are measured to be 6.80.9+1.0%6.8^{+1.0}_{-0.9}\%, 3.60.6+0.7%3.6^{+0.7}_{-0.6}\%, and 2.20.4+0.5%2.2^{+0.5}_{-0.4}\% respectively. The EELG fractions do not vary strongly with UV luminosity in the range (21.6<MUV<19.0-21.6<M_{\rm{UV}}<-19.0) considered in this paper, consistent with findings at higher redshifts. We compare our results to z5\rm{z}\sim5 and z7\rm{z}\sim7 studies where candidate EELGs have been discovered through Spitzer/IRAC colours, and we identify rapid evolution with redshift in the fraction of star-forming galaxies observed in an extreme emission line phase (a rise by a factor 10\sim10 between z2\rm{z}\sim2 and z7\rm{z}\sim7). This evolution is consistent with an increased incidence of strong bursts in the galaxy population of the reionisation era. While this population makes a sub-dominant contribution of the ionising emissivity at z2\rm{z}\simeq2, EELGs are likely to dominate the ionising output in the reionisation era.Comment: Submitted to MNRAS. 13 pages, 6 figure

    Contrast Enhanced Micro-Computed Tomography Resolves the 3-Dimensional Morphology of the Cardiac Conduction System in Mammalian Hearts

    Get PDF
    The general anatomy of the cardiac conduction system (CCS) has been known for 100 years, but its complex and irregular three-dimensional (3D) geometry is not so well understood. This is largely because the conducting tissue is not distinct from the surrounding tissue by dissection. The best descriptions of its anatomy come from studies based on serial sectioning of samples taken from the appropriate areas of the heart. Low X-ray attenuation has formerly ruled out micro-computed tomography (micro-CT) as a modality to resolve internal structures of soft tissue, but incorporation of iodine, which has a high molecular weight, into those tissues enhances the differential attenuation of X-rays and allows visualisation of fine detail in embryos and skeletal muscle. Here, with the use of a iodine based contrast agent (I2KI), we present contrast enhanced micro-CT images of cardiac tissue from rat and rabbit in which the three major subdivisions of the CCS can be differentiated from the surrounding contractile myocardium and visualised in 3D. Structures identified include the sinoatrial node (SAN) and the atrioventricular conduction axis: the penetrating bundle, His bundle, the bundle branches and the Purkinje network. Although the current findings are consistent with existing anatomical representations, the representations shown here offer superior resolution and are the first 3D representations of the CCS within a single intact mammalian heart

    Arrhythmogenic gene remodelling in elderly patients with type 2 diabetes with aortic stenosis and normal left ventricular ejection fraction

    Get PDF
    New Findings What is the central question of this study? Type 2 diabetes is associated with a higher rate of ventricular arrhythmias compared with the non‐diabetic population, but the associated myocardial gene expression changes are unknown; furthermore, it is also unknown whether any changes are attributable to chronic hyperglycaemia or are a consequence of structural changes. What is the main finding and its importance? We found downregulation of left ventricular ERG gene expression and increased NCX1 gene expression in humans with type 2 diabetes compared with control patients with comparable left ventricular hypertrophy and possible myocardial fibrosis. This was associated with QT interval prolongation. Diabetes and associated chronic hyperglycaemia may therefore promote ventricular arrhythmogenesis independently of structural changes. Type 2 diabetes is associated with a higher rate of ventricular arrhythmias, and this is hypothesized to be independent of coronary artery disease or hypertension. To investigate further, we compared changes in left ventricular myocardial gene expression in type 2 diabetes patients with patients in a control group with left ventricular hypertrophy. Nine control patients and seven patients with type 2 diabetes with aortic stenosis undergoing aortic valve replacement had standard ECGs, signal‐averaged ECGs and echocardiograms before surgery. During surgery, a left ventricular biopsy was taken, and mRNA expressions for genes relevant to the cardiac action potential were estimated by RT‐PCR. Mathematical modelling of the action potential and calcium transient was undertaken using the O'Hara–Rudy model using scaled changes in gene expression. Echocardiography revealed similar values for left ventricular size, filling pressures and ejection fraction between groups. No difference was seen in positive signal‐averaged ECGs between groups, but the standard ECG demonstrated a prolonged QT interval in the diabetes group. Gene expression of KCNH2 and KCNJ3 were lower in the diabetes group, whereas KCNJ2 , KCNJ5 and SLC8A1 expression were higher. Modelling suggested that these changes would lead to prolongation of the action potential duration with generation of early after‐depolarizations secondary to a reduction in density of the rapid delayed rectifier K+ current and increased Na+–Ca2+ exchange current. These data suggest that diabetes leads to pro‐arrythmogenic changes in myocardial gene expression independently of left ventricular hypertrophy or fibrosis in an elderly population

    The effect of cutting conditions on power inputs when machining

    Get PDF
    Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting

    First insights into the ISM at z > 8 with JWST: Possible physical implications of a high [O iii] λ4363/[O iii] λ5007

    Get PDF
    We present a detailed analysis of the rest-frame optical emission line ratios for three spectroscopically confirmed galaxies at z &gt; 7.5. The galaxies were identified in the James Webb Space Telescope (JWST) Early Release Observations field SMACS J0723.3 - 7327. By quantitatively comparing Balmer and oxygen line ratios of these galaxies with various low-redshift 'analogue' populations (e.g. Green Peas, Blueberries, etc.), we show that no single analogue population captures the diversity of line ratios of all three galaxies observed at z &gt; 7.5. We find that S06355 at z = 7.67 and S10612 at z = 7.66 are similar to local Green Peas and Blueberries. In contrast, S04590 at z = 8.50 appears to be significantly different from the other two galaxies, most resembling extremely low-metallicity systems in the local Universe. Perhaps the most striking spectral feature in S04590 is the curiously high [O iii] λ4363/[O iii] λ5007 ratio (RO3) of 0.048 (or 0.055 when dust-corrected), implying either extremely high electron temperatures, &gt;3 × 104 K, or gas densities &gt;104 cm-3. Observed line ratios indicate that this galaxy is unlikely to host an AGN. Using photoionization modelling, we show that the inclusion of high-mass X-ray binaries or a high cosmic ray background in addition to a young, low-metallicity stellar population can provide the additional heating necessary to explain the observed high RO3 while remaining consistent with other observed line ratios. Our models represent a first step at accurately characterizing the dominant sources of photoionization and heating at very high redshifts, demonstrating that non-thermal processes may become important as we probe deeper into the Epoch of Reionization

    Early results from GLASS-JWST. X: Rest-frame UV-optical properties of galaxies at 7 < z < 9

    Full text link
    We present the first James Webb Space Telescope/NIRCam-led determination of 7<z<97<z<9 galaxy properties based on broadband imaging from 0.8 to 5 microns as part of the GLASS-JWST Early Release Science program. This is the deepest dataset acquired at these wavelengths to date, with an angular resolution 0.14\lesssim0.14 arcsec. We robustly identify 14 galaxies with S/N>8 in F444W from 8 arcmin2^2 of data at mAB28m_{AB}\leq 28 from a combination of dropout and photometric redshift selection. From simulated data modeling, we estimate the dropout sample purity to be 90%\gtrsim90\%. We find that the number density of these sources is broadly consistent with expectations from the UV luminosity function determined from Hubble Space Telescope data. We characterize galaxy physical properties using a Bayesian Spectral Energy Distribution fitting method, finding median stellar mass 108.7M10^{8.7}M_\odot and age 130 Myr, indicating they started ionizing their surroundings at redshift z>9.5z>9.5. Their star formation main sequence is consistent with predictions from simulations. Lastly, we introduce an analytical framework to constrain main-sequence evolution at z>7z>7 based on galaxy ages and basic assumptions, through which we find results consistent with expectations from cosmological simulations. While this work only gives a glimpse of the properties of typical galaxies that are thought to drive the reionization of the universe, it clearly shows the potential of JWST to unveil unprecedented details on galaxy formation in the first billion years.Comment: Submitted to ApJL. 12 pages, 3 Figure

    First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007

    Get PDF
    © 2022 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.We present a detailed analysis of the rest-frame optical emission line ratios for three spectroscopically confirmed galaxies at z > 7.5. The galaxies were identified in the James Webb Space Telescope (JWST) Early Release Observations field SMACS J0723.3 − 7327. By quantitatively comparing Balmer and oxygen line ratios of these galaxies with various low-redshift ‘analogue’ populations (e.g. Green Peas, Blueberries, etc.), we show that no single analogue population captures the diversity of line ratios of all three galaxies observed at z > 7.5. We find that S06355 at z = 7.67 and S10612 at z = 7.66 are similar to local Green Peas and Blueberries. In contrast, S04590 at z = 8.50 appears to be significantly different from the other two galaxies, most resembling extremely low-metallicity systems in the local Universe. Perhaps the most striking spectral feature in S04590 is the curiously high [O III] λ4363/[O III] λ5007 ratio (RO3) of 0.048 (or 0.055 when dust-corrected), implying either extremely high electron temperatures, >3 × 104 K, or gas densities >104 cm−3. Observed line ratios indicate that this galaxy is unlikely to host an AGN. Using photoionization modelling, we show that the inclusion of high-mass X-ray binaries or a high cosmic ray background in addition to a young, low-metallicity stellar population can provide the additional heating necessary to explain the observed high RO3 while remaining consistent with other observed line ratios. Our models represent a first step at accurately characterizing the dominant sources of photoionization and heating at very high redshifts, demonstrating that non-thermal processes may become important as we probe deeper into the Epoch of Reionization.Peer reviewe

    Stress-Activated Kinase MKK7 Governs Epigenetics of Cardiac Repolarization for Arrhythmia Prevention

    Get PDF
    BACKGROUND: Ventricular arrhythmia is a leading cause of cardiac mortality. Most antiarrhythmics present paradoxical proarrhythmic side effects, culminating in a greater risk of sudden death. METHODS: We describe a new regulatory mechanism linking mitogen-activated kinase kinase-7 deficiency with increased arrhythmia vulnerability in hypertrophied and failing hearts using mouse models harboring mitogen-activated kinase kinase-7 knockout or overexpression. The human relevance of this arrhythmogenic mechanism is evaluated in human-induced pluripotent stem cell-derived cardiomyocytes. Therapeutic potentials by targeting this mechanism are explored in the mouse models and human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Mechanistically, hypertrophic stress dampens expression and phosphorylation of mitogen-activated kinase kinase-7. Such mitogen-activated kinase kinase-7 deficiency leaves histone deacetylase-2 unphosphorylated and filamin-A accumulated in the nucleus to form a complex with Kruppel-like factor-4. This complex leads to Kruppel-like factor-4 disassociation from the promoter regions of multiple key potassium channel genes (Kv4.2, KChIP2, Kv1.5, ERG1, and Kir6.2) and reduction of their transcript levels. Consequent repolarization delays result in ventricular arrhythmias. Therapeutically, targeting the repressive function of the Kruppel-like factor-4/histone deacetylase-2/filamin-A complex with the histone deacetylase-2 inhibitor valproic acid restores K+ channel expression and alleviates ventricular arrhythmias in pathologically remodeled hearts. CONCLUSIONS: Our findings unveil this new gene regulatory avenue as a new antiarrhythmic target where repurposing of the antiepileptic drug valproic acid as an antiarrhythmic is supported.British Heart Foundation [PG/09/052/27833, PG/14/71/31063, PG/12/76/29852, FS/15/16/31477]; Medical Research Council [G1002082, MC_PC_13070]; American Heart Association National Scientist Development Grants [12SDG12070077]; National Basic Research Program of China [2012CB518000]SCI(E)ARTICLE7683-69913

    Low-mass bursty galaxies in JADES efficiently produce ionising photons and could represent the main drivers of reionisation

    Get PDF
    © 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We study galaxies in JADES Deep to study the evolution of the ionising photon production efficiency, ξion\xi_{\rm{ion}}, observed to increase with redshift. We estimate ξion\xi_{\rm{ion}} for a sample of 677 galaxies at z49z \sim 4 - 9 using NIRCam photometry. Specifically, combinations of the medium and wide bands F335M-F356W and F410M-F444W to constrain emission lines that trace ξion\xi_{\rm{ion}}: Hα\alpha and [OIII]. Additionally, we use the spectral energy distribution fitting code \texttt{Prospector} to fit all available photometry and infer galaxy properties. The flux measurements obtained via photometry are consistent with FRESCO and NIRSpec-derived fluxes. Moreover, the emission-line-inferred measurements are in tight agreement with the \texttt{Prospector} estimates. We also confirm the observed ξion\xi_{\rm{ion}} trend with redshift and MUV_{\rm{UV}}, and find: logξion(z,MUV)=(0.05±0.02)z+(0.11±0.02)MUV+(27.33±0.37)\log \xi_{\rm{ion}} (z,\text{M}_{\rm{UV}}) = (0.05 \pm 0.02)z + (0.11 \pm 0.02) \text{M}_{\rm{UV}} + (27.33 \pm 0.37). We use \texttt{Prospector} to investigate correlations of ξion\xi_{\rm{ion}} with other galaxy properties. We see a clear correlation between ξion\xi_{\rm{ion}} and burstiness in the star formation history of galaxies, given by the ratio of recent to older star formation, where burstiness is more prevalent at lower stellar masses. We also convolve our ξion\xi_{\rm{ion}} relations with luminosity functions from the literature, and constant escape fractions of 10 and 20\%, to place constraints on the cosmic ionising photon budget. By combining our results, we find that if our sample is representative of the faint low-mass galaxy population, galaxies with bursty star formation are efficient enough in producing ionising photons and could be responsible for the reionisation of the Universe.Peer reviewe
    corecore