490 research outputs found

    A search for stable strange quark matter nuggets in helium

    Full text link
    A search for stable strange quark nuggets has been conducted in helium and argon using a high sensitivity mass spectrometer. The search was guided by a mass formula for strange quark nuggets which suggested that stable strange helium might exist at a mass around 65 u. The chemical similarity of such ``strangelets'' to noble gas atoms and the gravitational unboundedness of normal helium result in a large enhancement in the sensitivity of such a search. An abundance limit of no more than 2⋅10−112 \cdot 10^{-11} strangelets per normal nucleus is imposed by our search over a mass region from 42 to 82 u, with much more stringent limits at most (non-integer) masses.Comment: 11 pages RevTeX, Accepted for publication in Physics Letters B. 2 updated references added. Air abundance to cosmic abundance ratios now reflect updated references. No change in results or figures. Also see ftp://www-physics.mps.ohio-state.edu/pub/nucex/sq

    Study of the (d->,6-Li) Reaction

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit

    Radiative Proton Capture Studies at Intermediate Energies

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit

    Observing Nucleon Decay in Lead Perchlorate

    Get PDF
    Lead perchlorate, part of the OMNIS supernova neutrino detector, contains two nuclei, 208Pb and 35Cl, that might be used to study nucleon decay. Both would produce signatures that will make them especially useful for studying less-well-studied neutron decay modes, e.g., those in which only neutrinos are emitted.Comment: 6 pages, 2 figure

    Radiative Proton Capture: Recent Results

    Get PDF
    Supported by the National Science Foundation and Indiana Universit

    The (d,6-Li) Reaction Studies

    Get PDF
    Supported by the National Science Foundation and Indiana Universit

    Exploratory Measurements of the (3-He,n) Reaction at Medium Energies

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Optimization of the design of OMNIS, the observatory of multiflavor neutrinos from supernovae

    Full text link
    A Monte Carlo code has been developed to simulate the operation of the planned detectors in OMNIS, a supernova neutrino observatory. OMNIS will detect neutrinos originating from a core collapse supernova by the detection of spalled neutrons from Pb- or Fe-nuclei. This might be accomplished using Gd-loaded liquid scintillator. Results for the optimum configuration for such modules with respect to both neutron detection efficiency and cost efficiency are presented. Careful consideration has been given to the expected levels of radioactive backgrounds and their effects. The results show that the amount of data to be processed by a software trigger can be reduced to the <10kHz region and a neutron, once produced in the detector, can be detected and identified with an efficiency of >30%.Comment: Elsevier preprint; 29 pages, 23 figure

    The rp-process and new measurements of beta-delayed proton decay of light Ag and Cd isotopes

    Full text link
    Recent network calculations suggest that a high temperature rp-process could explain the abundances of light Mo and Ru isotopes, which have long challenged models of p-process nuclide production. Important ingredients to network calculations involving unstable nuclei near and at the proton drip line are β\beta-halflives and decay modes, i.e., whether or not β\beta-delayed proton decay takes place. Of particular importance to these network calculation are the proton-rich isotopes 96^{96}Ag, 98^{98}Ag, 96^{96}Cd and 98^{98}Cd. We report on recent measurements of β\beta-delayed proton branching ratios for 96^{96}Ag, 98^{98}Ag, and 98^{98}Cd at the on-line mass separator at GSI.Comment: 4 pages, uses espcrc1.sty. Proceedings of the 4th International Symposium Nuclei in the Cosmos, June 1996, Notre Dame/IN, USA, Ed. M. Wiescher, to be published in Nucl.Phys.A. Also available at ftp://ftp.physics.ohio-state.edu/pub/nucex/nic96-gs

    Analyzing Power of the Proton Continuum for 150 and 200 MeV Polarized Protons on 12-C and 58,62-Ni

    Get PDF
    This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit
    • …
    corecore