1,058 research outputs found
Design and fabrication of plasmonic cavities for magneto-optical sensing (article)
This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this record.The dataset associated with this article is located in ORE at: http://hdl.handle.net/10871/32604The design and fabrication of a novel plasmonic cavity, intended to allow far-field recovery of signals arising from near field magneto-optical interactions, is presented. Finite element modeling is used to describe the interaction between a gold film, containing cross-shaped cavities, with a nearby magnetic under-layer. The modeling revealed strong electric field confinement near the center of the cross structure for certain optical wavelengths, which may be tuned by varying the length of the cross through a range that is compatible with available fabrication techniques. Furthermore, the magneto optical Kerr effect (MOKE) response of the composite structure can be enhanced with respect to that of the bare magnetic film. To confirm these findings, cavities were milled within gold films deposited upon a soluble film, allowing relocation to a ferromagnetic film using a float transfer technique. Cross cavity arrays were fabricated and characterized by optical transmission spectroscopy prior to floating, revealing resonances at optical wavelengths in good agreement with the finite element modeling. Following transfer to the magnetic film, circular test apertures within the gold film yielded clear magneto-optical signals even for diameters within the sub-wavelength regime. However, no magneto-optical signal was observed for the cross cavity arrays, since the FIB milling process was found to produce nanotube structures within the soluble under-layer that adhered to the gold. Further optimization of the fabrication process should allow recovery of magneto-optical signal from cross cavity structures.Financial support from the UK Engineering and Physical Science Research Council (EPSRC) grants EP/1038470/I and EP/1038411/1 is gratefully acknowledged. We also acknowledge the support of Seagate Technology (Ireland) under SOW 00077300.0. RMB contribution to project was supported by the Royal Academy of Engineering under the Research Chairs and Senior Research Fellowships Scheme
Shape-induced force fields in optical trapping
Advances in optical tweezers, coupled with the proliferation of two-photon polymerization systems, mean that it is now becoming routine to fabricate and trap non-spherical particles. The shaping of both light beams and particles allows fine control over the flow of momentum from the optical to mechanical regimes. However, understanding and predicting the behaviour of such systems is highly complex in comparison with the traditional optically trapped microsphere. In this Article, we present a conceptually new and simple approach based on the nature of the optical force density. We illustrate the method through the design and fabrication of a shaped particle capable of acting as a passive force clamp, and we demonstrate its use as an optically trapped probe for imaging surface topography. Further applications of the design rules highlighted here may lead to new sensors for probing biomolecule mechanics, as well as to the development of optically actuated micromachines
Differences in grass pollen allergen exposure across Australia
Š 2015 The Authors Š 2015 Public Health Association of Australia. Objective: Allergic rhinitis and allergic asthma are important chronic diseases posing serious public health issues in Australia with associated medical, economic, and societal burdens. Pollen are significant sources of clinically relevant outdoor aeroallergens, recognised as both a major trigger for, and cause of, allergic respiratory diseases. This study aimed to provide a national, and indeed international, perspective on the state of Australian pollen data using a large representative sample. Methods: Atmospheric grass pollen concentration is examined over a number of years within the period 1995 to 2013 for Brisbane, Canberra, Darwin, Hobart, Melbourne, and Sydney, including determination of the 'clinical' grass pollen season and grass pollen peak. Results: The results of this study describe, for the first time, a striking spatial and temporal variability in grass pollen seasons in Australia, with important implications for clinicians and public health professionals, and the Australian grass pollen-allergic community. Conclusions: These results demonstrate that static pollen calendars are of limited utility and in some cases misleading. This study also highlights significant deficiencies and limitations in the existing Australian pollen monitoring and data. Implications: Establishment of an Australian national pollen monitoring network would help facilitate advances in the clinical and public health management of the millions of Australians with asthma and allergic rhinitis
The SNAPSHOT study protocol : SNAcking, Physical activity, Self-regulation, and Heart rate Over Time
Peer reviewedPublisher PD
Routine Antenatal Anti-D Prophylaxis in Women Who Are Rh(D) Negative: Meta-Analyses Adjusted for Differences in Study Design and Quality
Background: To estimate the effectiveness of routine antenatal anti-D prophylaxis for preventing sensitisation in pregnant Rhesus negative women, and to explore whether this depends on the treatment regimen adopted. Methods: Ten studies identified in a previous systematic literature search were included. Potential sources of bias were systematically identified using bias checklists, and their impact and uncertainty were quantified using expert opinion. Study results were adjusted for biases and combined, first in a random-effects meta-analysis and then in a random-effects metaregression analysis. Results: In a conventional meta-analysis, the pooled odds ratio for sensitisation was estimated as 0.25 (95 % CI 0.18, 0.36), comparing routine antenatal anti-D prophylaxis to control, with some heterogeneity (I 2 = 19%). However, this naĂŻve analysis ignores substantial differences in study quality and design. After adjusting for these, the pooled odds ratio for sensitisation was estimated as 0.31 (95 % CI 0.17, 0.56), with no evidence of heterogeneity (I 2 = 0%). A meta-regression analysis wa
A novel isolator-based system promotes viability of human embryos during laboratory processing
In vitro fertilisation (IVF) and related technologies are arguably the most challenging of all cell culture applications. The starting material is a single cell from which one aims to produce an embryo capable of establishing a pregnancy eventually leading to a live birth. Laboratory processing during IVF treatment requires open manipulations of gametes and embryos, which typically involves exposure to ambient conditions. To reduce the risk of cellular stress, we have developed a totally enclosed system of interlinked isolator-based workstations designed to maintain oocytes and embryos in a physiological environment throughout the IVF process. Comparison of clinical and laboratory data before and after the introduction of the new system revealed that significantly more embryos developed to the blastocyst stage in the enclosed isolator-based system compared with conventional open-fronted laminar flow hoods. Moreover, blastocysts produced in the isolator-based system contained significantly more cells and their development was accelerated. Consistent with this, the introduction of the enclosed system was accompanied by a significant increase in the clinical pregnancy rate and in the proportion of embryos implanting following transfer to the uterus. The data indicate that protection from ambient conditions promotes improved development of human embryos. Importantly, we found that it was entirely feasible to conduct all IVF-related procedures in the isolator-based workstations
Quantitative evaluation of oligonucleotide surface concentrations using polymerization-based amplification
Quantitative evaluation of minimal polynucleotide concentrations has become a critical analysis among a myriad of applications found in molecular diagnostic technology. Development of high-throughput, nonenzymatic assays that are sensitive, quantitative and yet feasible for point-of-care testing are thus beneficial for routine implementation. Here, we develop a nonenzymatic method for quantifying surface concentrations of labeled DNA targets by coupling regulated amounts of polymer growth to complementary biomolecular binding on array-based biochips. Polymer film thickness measurements in the 20â220Â nm range vary logarithmically with labeled DNA surface concentrations over two orders of magnitude with a lower limit of quantitation at 60 molecules/Îźm2 (âź106 target molecules). In an effort to develop this amplification method towards compatibility with fluorescence-based methods of characterization, incorporation of fluorescent nanoparticles into the polymer films is also evaluated. The resulting gains in fluorescent signal enable quantification using detection instrumentation amenable to point-of-care settings
Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone
Trabecular bone has been previously recognized as time-dependent (viscoelastic) material, but the relationships of its viscoelastic behaviour with bone volume fraction (BV/TV) have not been investigated so far. Therefore, the aim of the present study was to quantify the time-dependent viscoelastic behaviour of trabecular bone and relate it to BV/TV. Uniaxial compressive creep experiments were performed on cylindrical bovine trabecular bone samples ([Formula: see text] ) at loads corresponding to physiological strain level of 2000Â [Formula: see text] . We assumed that the bone behaves in a linear viscoelastic manner at this low strain level and the corresponding linear viscoelastic parameters were estimated by fitting a generalized KelvinâVoigt rheological model to the experimental creep strain response. Strong and significant power law relationships ([Formula: see text] ) were found between time-dependent creep compliance function and BV/TV of the bone. These BV/TV-based material properties can be used in finite element models involving trabecular bone to predict time-dependent response. For usersâ convenience, the creep compliance functions were also converted to relaxation functions by using numerical interconversion methods and similar power law relationships were reported between time-dependent relaxation modulus function and BV/TV
The association between survey timing and patient-reported experiences with hospitals: results of a national postal survey
<p>Abstract</p> <p>Background</p> <p>Research on the effect of survey timing on patient-reported experiences and patient satisfaction with health services has produced contradictory results. The objective of this study was thus to assess the association between survey timing and patient-reported experiences with hospitals.</p> <p>Methods</p> <p>Secondary analyses of a national inpatient experience survey including 63 hospitals in the 5 health regions in Norway during the autumn of 2006. 10,912 (45%) patients answered a postal questionnaire after their discharge from hospital. Non-respondents were sent a reminder after 4 weeks. Multilevel linear regression analysis was used to assess the association between survey timing and patient-reported experiences, both bivariate analysis and multivariate analysis controlling for other predictors of patient experiences.</p> <p>Results</p> <p>Multivariate multilevel regression analysis revealed that survey time was significantly and negatively related to three of six patient-reported experience scales: doctor services (Beta = -0.424, <it>p</it>< 0.05), information about examinations (Beta = -0.566, <it>p </it>< 0.05) and organization (Beta = -0.528, <it>p </it>< 0.05). Patient age, self-perceived health and type of admission were significantly related to all patient-reported experience scales (better experiences with higher age, better health and routine admission), and all other predictors had at least one significant association with patient-reported experiences.</p> <p>Conclusions</p> <p>Survey time was significantly and negatively related to three of the six scales for patient-reported experiences with hospitals. Large differences in survey time across hospitals could be problematic for between-hospital comparisons, implying that survey time should be considered as a potential adjustment factor. More research is needed on this topic, including studies with other population groups, other data collection modes and a longer time span.</p
Using PIV to measure granular temperature in saturated unsteady polydisperse granular flows
The motion of debris flows, gravity-driven fast
moving mixtures of rock, soil and water can be interpreted
using the theories developed to describe the shearing motion
of highly concentrated granular fluid flows. Frictional, collisional
and viscous stress transfer between particles and
fluid characterizes the mechanics of debris flows. To quantify
the influence of collisional stress transfer, kinetic models
have been proposed. Collisions among particles result in random
fluctuations in their velocity that can be represented by
their granular temperature, T. In this paper particle image
velocimetry, PIV, is used to measure the instantaneous velocity
field found internally to a physical model of an unsteady
debris flow created by using âtransparent soilââi.e. a mixture
of graded glass particles and a refractively matched fluid.
The ensemble possesses bulk properties similar to that of
real soil-pore fluid mixtures, but has the advantage of giving
optical access to the interior of the flow by use of plane laser
induced fluorescence, PLIF. The relationship between PIV
patch size and particle size distribution for the front and tail
of the flows is examined in order to assess their influences
on the measured granular temperature of the system. We find
that while PIV can be used to ascertain values of granular
temperature in dense granular flows, due to increasing spatial
correlation with widening gradation, a technique proposed to
infer the true granular temperature may be limited to flows
of relatively uniform particle size or large bulk
- âŚ