9,201 research outputs found

    AN EXPERIMENTAL INVESTIGATION IN AN ATMOSPHERE ENTRY SIMULATOR OF NYLON AS AN ABLATIVE MATERIAL FOR BALLISTIC MISSILES

    Get PDF
    Investigation in atmosphere entry simulator of nylon as ablative material for ballistic missile

    Parity Violation in Neutron Capture Reactions

    Get PDF
    In the last decade, the scattering of polarized neutrons on compound nucleus resonances proved to be a powerful experimental technique for probing nuclear parity violation. Longitudinal analyzing powers in neutron transmission measurements on p-wave resonances in nuclei such as 139^{139}La and 232^{232}Th were found to be as large as 10%. Here we examine the possibilities of carrying out a parallel program to measure asymmetries in the (n,γ(n,\gamma) reaction on these same compound nuclear resonances. Symmetry-violating (n,γ(n,\gamma) studies can also show asymmetries as large as 10%, and have the advantage over transmission experiments of allowing parity-odd asymmetries in several different gamma-decay branches from the same resonance. Thus, studies of parity violation in the (n,γ)(n,\gamma) reaction using high efficiency germanium detectors at the Los Alamos Lujan facility, for example, could determine the parity-odd nucleon-nucleon matrix elements in complex nuclei with high accuracy. Additionally, simultaneous studies of the E1 and VPNCV_{PNC} matrix elements invol ved in these decays could be used to help constrain the statistical theory of parity non-conservation in compound nuclei.Comment: 10 pages, 1 figur

    Deuterium site occupancy and phase boundaries in ZrNiDx (0.87<=x<=3.0)

    Get PDF
    ZrNiDx samples with compositions between x=0.87 and x=3.0 were investigated by 2H magic-angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR), powder x-ray diffraction (XRD), neutron vibrational spectroscopy (NVS), and neutron powder diffraction (NPD). The rigid-lattice MAS-NMR spectrum for a ZrNiD0.88 sample in the triclinic beta phase shows a single phase with two well-resolved resonances at +11.5 and −1.7 ppm, indicating that two inequivalent D sites are occupied, as was observed previously in ZrNiD1.0. For ZrNiD0.88, the ratio of spectral intensities of the two lines is 1:0.76, indicating that the D site corresponding to the +11.5 ppm line has the lower site energy and is fully occupied. Similarly, the neutron vibrational spectra for ZrNiD0.88 clearly confirm that at least two sites are occupied. For ZrNiD1.0, XRD indicates that ~5% of the metal atoms are in the gamma phase, corresponding to an upper composition for the beta phase of x=0.90±0.04, consistent with the MAS-NMR and neutron vibrational spectra indicating that x=0.88 is single phase. The MAS-NMR and NVS of ZrNiD1.87 indicate a mixed-phase sample (beta+gamma) and clearly show that the two inequivalent sites observed at x=0.88 cannot be attributed to the sites normally occupied in the gamma phase. For ZrNiD2.75, NPD results indicate a gamma-phase boundary of x=2.86±0.03 at 300 K, increasing to 2.93±0.02 at 180 K and below, in general agreement with the phase boundary estimated from the NVS and MAS-NMR spectra of ZrNiD1.87. Rigid-lattice 2H MAS-NMR spectra of ZrNiD2.75 and ZrNiD2.99 show a ratio of spectral intensities of 1.8±0.1:1 and 2.1±0.1:1 (Zr3Ni:Zr3Ni2), respectively, indicating complete occupancy of the lower-energy Zr3Ni2 site, consistent with the NPD results. For each composition, the correlation time for deuterium hopping was determined at the temperature where resolved peaks in the MAS-NMR spectrum coalesce due to motion between inequivalent D sites. The measured correlation times are consistent with previously determined motional parameters for ZrNiHx

    Effective health care for older people resident in care homes: the optimal study protocol for realist review

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Care homes in the UK rely on general practice for access to specialist medical and nursing care as well as referral to therapists and secondary care. Service delivery to care homes is highly variable in both quantity and quality. This variability is also evident in the commissioning and organisation of care home-specific services that range from the payment of incentives to general practitioners (GPs) to visit care homes, to the creation of care home specialist teams and outreach services run by geriatricians. No primary studies or systematic reviews have robustly evaluated the impact of these different approaches on organisation and resident-level outcomes. Our aim is to identify factors which may explain the perceived or demonstrated effectiveness of programmes to improve health-related outcomes in older people living in care homes. Methods/Design: A realist review approach will be used to develop a theoretical understanding of what works when, why and in what circumstances. Elements of service models of interest include those that focus on assessment and management of residents’ health, those that use strategies to encourage closer working between visiting health care providers and care home staff, and those that address system-wide issues about access to assessment and treatment. These will include studies on continence, dignity, and speech and language assessment as well as interventions to promote person centred dementia care, improve strength and mobility, and nutrition. The impact of these interventions and their different mechanisms will be considered in relation to five key outcomes: residents’ medication use, use of out of hours’ services, hospital admissions (including use of Accident and Emergency) and length of hospital stay, costs and user satisfaction. An iterative three-stage approach will be undertaken that is stakeholder-driven and optimises the knowledge and networks of the research team. Discussion: This realist review will explore why and for whom different approaches to providing health care to residents in care homes improves access to health care in the five areas of interest. It will inform commissioning decisions and be the basis for further research. This systematic review protocol is registered on the PROSPERO database reference number: CRD42014009112NIHR Health Services & Delivery Research Programme. Project number 11/1021/0

    A Numerical Approach to Coulomb Gauge QCD

    Get PDF
    We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wavefunction using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wavefunctional

    LiSc(BH_4)_4 as a Hydrogen Storage Material: Multinuclear High-Resolution Solid-State NMR and First-Principles Density Functional Theory Studies

    Get PDF
    A lithium salt of anionic scandium tetraborohydride complex, LiSc(BH_4)_4, was studied both experimentally and theoretically as a potential hydrogen storage medium. Ball milling mixtures of LiBH_4 and ScCl_3 produced LiCl and a unique crystalline hydride, which has been unequivocally identified via multinuclear solid-state nuclear magnetic resonance (NMR) to be LiSc(BH_4)_4. Under the present reaction conditions, there was no evidence for the formation of binary Sc(BH_4)_3. These observations are in agreement with our first-principles calculations of the relative stabilities of these phases. A tetragonal structure in space group I (#82) is predicted to be the lowest energy state for LiSc(BH_4)_4, which does not correspond to structures obtained to date on the crystalline ternary borohydride phases made by ball milling. Perhaps reaction conditions are resulting in formation of other polymorphs, which should be investigated in future studies via neutron scattering on deuterides. Hydrogen desorption while heating these Li−Sc−B−H materials up to 400 °C yielded only amorphous phases (besides the virtually unchanged LiCl) that were determined by NMR to be primarily ScB_2 and [B_(12)H_(12)]^(−2) anion containing (e.g., Li_2B_(12)H_(12)) along with residual LiBH_4. Reaction of a desorbed LiSc(BH_4)_4 + 4LiCl mixture (from 4LiBH_4/ScCl_3 sample) with hydrogen gas at 70 bar resulted only in an increase in the contents of Li_2B_(12)H_(12) and LiBH_4. Full reversibility to reform the LiSc(BH_4)_4 was not found. Overall, the Li−Sc−B−H system is not a favorable candidate for hydrogen storage applications

    Synthesis and characterization of La<sub>0.8</sub>Sr<sub>1.2</sub>Co<sub>0.5</sub>M<sub>0.5</sub>O<sub>4-?</sub> (M=Fe, Mn)

    Get PDF
    The M4+-containing K2NiF4-type phases La0.8Sr1.2Co0.5Fe0.5O4 and La0.8Sr1.2Co0.5Mn0.5O4 have been synthesized by a sol-gel procedure and characterized by X-ray powder diffraction, thermal analysis, neutron powder diffraction and Mössbauer spectroscopy. Oxide ion vacancies are created in these materials via reduction of M4+ to M3+ and of Co3+ to Co2+. The vacancies are confined to the equatorial planes of the K2NiF4-type structure. A partial reduction of Mn3+ to Mn2+ also occurs to achieve the oxygen stoichiometry in La0.8Sr1.2Co0.5Mn0.5O3.6. La0.8Sr1.2Co0.5Fe0.5O3.65 contains Co2+ and Fe3+ ions which interact antiferromagnetically and result in noncollinear magnetic order consistent with the tetragonal symmetry. Competing ferromagnetic and antiferromagnetic interactions in La0.8Sr1.2Co0.5Fe0.5O4, La0.8Sr1.2Co0.5Mn0.5O4 and La0.8Sr1.2Co0.5Mn0.5O3.6 induce spin glass properties in these phases

    Toward Empirical Constraints on the Global Redshifted 21 cm Brightness Temperature During the Epoch of Reionization

    Full text link
    Preliminary results are presented from a simple, single-antenna experiment designed to measure the all-sky radio spectrum between 100 and 200 MHz. The system used an internal comparison-switching scheme to reduce non-smooth instrumental contaminants in the measured spectrum to 75 mK. From the observations, we place an initial upper limit of 450 mK on the relative brightness temperature of the redshifted 21 cm contribution to the spectrum due to neutral hydrogen in the intergalactic medium (IGM) during the epoch of reionization, assuming a rapid transition to a fully ionized IGM at a redshift of 8. With refinement, this technique should be able to distinguish between slow and fast reionization scenarios. To constrain the duration of reionization to dz > 2, the systematic residuals in the measured spectrum must be reduced to 3 mK.Comment: Submitted to ApJ. 9 pages including 6 figure

    An Exactly Conservative Integrator for the n-Body Problem

    Get PDF
    The two-dimensional n-body problem of classical mechanics is a non-integrable Hamiltonian system for n > 2. Traditional numerical integration algorithms, which are polynomials in the time step, typically lead to systematic drifts in the computed value of the total energy and angular momentum. Even symplectic integration schemes exactly conserve only an approximate Hamiltonian. We present an algorithm that conserves the true Hamiltonian and the total angular momentum to machine precision. It is derived by applying conventional discretizations in a new space obtained by transformation of the dependent variables. We develop the method first for the restricted circular three-body problem, then for the general two-dimensional three-body problem, and finally for the planar n-body problem. Jacobi coordinates are used to reduce the two-dimensional n-body problem to an (n-1)-body problem that incorporates the constant linear momentum and center of mass constraints. For a four-body choreography, we find that a larger time step can be used with our conservative algorithm than with symplectic and conventional integrators.Comment: 17 pages, 3 figures; to appear in J. Phys. A.: Math. Ge

    Interprofessional Collaborator Curriculum

    Get PDF
    Background: Physicians are often expected to participate with teams of health professionals; however, postgraduate training infrequently includes interprofessional (IP) or team training. Purpose: This curriculum was developed to demonstrate the knowledge, skills and attitudes which lead to successful IP collaboration. Curriculum: During a four-week geriatrics rotation, medicine interns complete a fifty-minute, in-person, multimedia lecture to introduce the IP collaborator concept and the Canadian and American IP competency frameworks. The IP pocket card is demonstrated and interns complete a guided, team-meeting video observation exercise. Using a Survey Monkey, narrative reporting tool, interns analyze team competencies that they observe or initiate during geriatrics team meetings during the rotation. They report on two interactions. They complete a closing Survey Monkey questionnaire and have an in-person debriefing. Results: We will have quantitative and qualitative data on interns’ recognition of IP collaborator competencies. Conclusion: Recognition of IP collaborator competencies will provide a framework for improving health professional effectiveness for systems-based care. Relevance to IP education or practice: Disseminating IP competencies. Learning Objectives: 1. The audience will be able to describe a new strategy for teaching IP competencies to health professionals. 2. The audience will become aware of a new method for combining the Canadian and American IP competencies. Todd James, MD, FACP Assistant Professor of Clinical Medicine Indiana University School of Medicine, Geriatrics Faculty Office Building, Floor 2 720 Eskenazi Avenue Indianapolis, IN 46202 Phone: 317-880-6582 Fax: 317-880-0332 Email: [email protected]
    corecore