542 research outputs found

    Investigation of mesoscale cloud features viewed by LANDSAT

    Get PDF
    The author has identified the following significant results. Some 50 LANDSAT images displaying mesoscale cloud features were analyzed. This analysis was based on the Rayleigh-Kuettner model describing the formation of that type of mesoscale cloud feature. This model lends itself to computation of the average wind speed in northerly flow from the dimensions of the cloud band configurations measured from a LANDSAT image. In nearly every case, necessary conditions of a curved wind profile and orientation of the cloud streets within 20 degrees of the direction of the mean wind in the convective layer were met. Verification of the results by direct observation was hampered, however, by the incompatibility of the resolution of conventional rawinsonde observations with the scale of the banded cloud patterns measured from LANDSAT data. Comparison seems to be somewhat better in northerly flows than in southerly flows, with the largest discrepancies in wind speed being within 8m/sec, or a factor of two

    The use of LANDSAT data to study mesoscale cloud features

    Get PDF
    There are no author-identified significant results in this report

    Heavy metal movement through insect food chains in pristine thermal springs of Yellowstone National Park

    Get PDF
    Yellowstone National Park thermal features regularly discharge various heavy metals and metalloids. These metals are taken up by microorganisms that often form mats in thermal springs. These microbial mats also serve as food sources for invertebrate assemblages. To examine how heavy metals move through insect food webs associated with hot springs, two sites were selected for this study. Dragon-Beowulf Hot Springs, acid-sulfate chloride springs, have a pH of 2.9, water temperatures above 70 oC, and populations of thermophilic bacterial, archaeal, and algal mats. Rabbit Creek Hot Springs, alkaline springs, have a pH of up to 9, some water temperatures in excess of 60 oC, and are populated with thermophilic and phototrophic bacterial mats. Mats in both hydrothermal systems form the trophic base and support active metal transfer to terrestrial food chains. In both types of springs, invertebrates bioaccumulated heavy metals including chromium, manganese, cobalt, nickel, copper, cadmium, mercury, tin and lead, and the metalloids arsenic, selenium, and antimony resulting from consuming the algal and bacterial mat biomass. At least two orders of magnitude increase in concentrations were observed in the ephydrid shore fly Paracoenia turbida, as compared to the mats for allmetals except antimony, mercury, and lead. The highest bioaccumulation factor (BAF) of 729 was observed for chromium. At the other end of the food web, the invertebrate apex predator, Cicindelidia haemorrhagica, had at least a 10-fold BAF for all metals at some location-year combinations, except with antimony. Of other taxa, high BAFs were observed with zinc for Nebria sp. (2180) and for Salda littoralis (1080). This accumulation, occurring between primary producer and primary consumer trophic levels at both springs, is biomagnified through the trophic web. These observations suggest trace metals enter the geothermal food web through the microbial mat community and are then transferred through the food chain. Also, while bioaccumulation of arsenic is uncommon, we observed five instances of increases near or exceeding 10-fold: Odontomyia sp. larvae (13.6), P. turbida (34.8), C. haemorrhagica (9.7), Rhagovelia distincta (16.3), and Ambrysus mormon (42.8)

    Quantifying endothelial cell proliferation in the zebrafish embryo

    Get PDF
    Introduction: Endothelial cell (EC) proliferation is a fundamental determinant of vascular development and homeostasis, and contributes to cardiovascular disease by increasing vascular permeability to blood-borne lipoproteins. Rodents have been traditionally used to analyse EC proliferation mechanisms in vascular health and disease; however, alternative models such as the zebrafish embryo allow researchers to conduct small scale screening studies in a physiologically relevant vasculature whilst reducing the use of mammals in biomedical research. In vitro models of EC proliferation are valuable but do not fully recapitulate the complexity of the in vivo situation. Several groups have used zebrafish embryos for vascular biology research because they offer the advantages of an in vivo model in terms of complexity but are also genetically manipulable and optically transparent. Methods: Here we investigated whether zebrafish embryos can provide a suitable model for the study of EC proliferation. We explored the use of antibody, DNA labelling, and time-lapse imaging approaches. Results: Antibody and DNA labelling approaches were of limited use in zebrafish due to the low rate of EC proliferation combined with the relatively narrow window of time in which they can label proliferating nuclei. By contrast, time-lapse imaging of fluorescent proteins localised to endothelial nuclei was a sensitive method to quantify EC proliferation in zebrafish embryos. Discussion: We conclude that time-lapse imaging is suitable for analysis of endothelial cell proliferation in zebrafish, and that this method is capable of capturing more instances of EC proliferation than immunostaining or cell labelling alternatives. This approach is relevant to anyone studying endothelial cell proliferation for screening genes or small molecules involved in EC proliferation. It offers greater biological relevance than existing in vitro models such as HUVECs culture, whilst reducing the overall number of animals used for this type of research

    The malignant epidemic-changing patterns of trauma

    Get PDF
    Objectives and Setting. The worldwide burden of trauma is increasing, but is unequally distributed between nations. Trauma in South Africa targets the young and productive in society and imposes a major burden on the health infrastructure. We undertook a review of injury trends among patients attending the Johannesburg Hospital Trauma Unit (JHTU) and the Johannesburg Medicolegal Laboratory (JMLL) in order to document the evolution in patterns of trauma over a 17-year period of great social and political change. Design, subjects and outcome measures. This was a retrospective review of all priority-one patients attending the JHTU from January 1985 to December 2001. The JHTU trauma database was used to retrieve information on patient demographics, wound mechanism and injury severity. The database at the JMLL, maintained since 1996, was examined and the manner and place of death were analysed.Results. The JHTU has seen an unprecedented increase in the number of trauma patients over the last 17 years. The patients' demographic profiles have altered and injury is now predominantly due to interpersonal violence. Unnatural deaths examined at the JMLL have declined by 19% since 1996; however, the proportion of those deaths due to gunshot wounds has risen.Conclusions. The social and political changes in South Africa in recent years have led to changes in the injury profiles seen at the JHTU. Part of the increase can be explained by desegregation and a reduction in the provision of local hospital services; however, the impact of urbanisation within South Africa, cross-border migration and the high incidence of substance abuse are recognised. Evidence supports the implementation of legislative, environmental, social and behavioural interventions to contain and reduce the incidence and impact of violence and injury. Concerted efforts must be made at all levels to curb South Africa's  trauma  epidemic

    The effect of absent blood flow on the zebrafish cerebral and trunk vasculature

    Get PDF
    The role of blood flow in vascular development is complex and context-dependent. In this study, we quantify the effect of the lack of blood flow on embryonic vascular development on two vascular beds, namely the cerebral and trunk vasculature in zebrafish. We perform this by analysing vascular topology, endothelial cell (EC) number, EC distribution, apoptosis, and inflammatory response in animals with normal blood flow or absent blood flow. We find that absent blood flow reduced vascular area and EC number significantly in both examined vascular beds, but the effect is more severe in the cerebral vasculature, and severity increases over time. Absent blood flow leads to an increase in non-EC-specific apoptosis without increasing tissue inflammation, as quantified by cerebral immune cell numbers and nitric oxide. Similarly, while stereotypic vascular patterning in the trunk is maintained, intra-cerebral vessels show altered patterning, which is likely to be due to vessels failing to initiate effective fusion and anastomosis rather than sprouting or path-seeking. In conclusion, blood flow is essential for cellular survival in both the trunk and cerebral vasculature, but particularly intra-cerebral vessels are affected by the lack of blood flow, suggesting that responses to blood flow differ between these two vascular beds

    Spontaneous orbiting of two spheres levitated in a vibrated liquid

    Get PDF
    In the absence of gravity, particles can form a suspension in a liquid irrespective of the difference in density between the solid and the liquid. If such a suspension is subjected to vibration there is relative motion between the particles and the fluid which can lead to self-organization and pattern formation. Here we describe experiments carried out to investigate the behavior of two identical spheres suspended magnetically in a fluid, mimicking weightless conditions. Under vibration the spheres mutually attract and, for sufficiently large vibration amplitudes, the spheres are observed to spontaneously orbit each other. The collapse of the experimental data onto a single curve indicates that the instability occurs at a critical value of the streaming Reynolds number. Simulations repro- duce the observed behaviour qualitatively and quantitatively, and are used to identify the features of the flow that are responsible for this instability

    Self-contained encrypted image folding

    Get PDF
    The recently introduced approach for Encrypted Image Folding is generalized to make it self-contained. The goal is achieved by enlarging the folded image so as to embed all the necessary information for the image recovery. The need for extra size is somewhat compensated by considering a transformation with higher folding capacity. Numerical examples show that the size of the resulting cipher image may be significantly smaller than the plain text one. The implementation of the approach is further extended to deal also with color images.Instituto de Física La Plat
    corecore