5,130 research outputs found

    Information based clustering

    Full text link
    In an age of increasingly large data sets, investigators in many different disciplines have turned to clustering as a tool for data analysis and exploration. Existing clustering methods, however, typically depend on several nontrivial assumptions about the structure of data. Here we reformulate the clustering problem from an information theoretic perspective which avoids many of these assumptions. In particular, our formulation obviates the need for defining a cluster "prototype", does not require an a priori similarity metric, is invariant to changes in the representation of the data, and naturally captures non-linear relations. We apply this approach to different domains and find that it consistently produces clusters that are more coherent than those extracted by existing algorithms. Finally, our approach provides a way of clustering based on collective notions of similarity rather than the traditional pairwise measures.Comment: To appear in Proceedings of the National Academy of Sciences USA, 11 pages, 9 figure

    The First Local Lockdown

    Get PDF

    Choral Ensembles, Celtic and English Traditions

    Get PDF
    This KSU School of Music performance features KSU Chamber Singers, Men\u27s Ensemble, and University Chorale directed by Dr. Leslie J. Blackwell, Director of Choral Activities.https://digitalcommons.kennesaw.edu/musicprograms/1984/thumbnail.jp

    Tuning the Hydrophobicity of Layer-Structure Silicates To Promote Adsorption of Nonaqueous Fluids: Effects of F– for OH– Substitution on CO2 Partitioning into Smectite Interlayers

    Get PDF
    The intercalation of non-aqueous fluids in the nanopores of organic and inorganic materials is of significant interest, particularly in the energy science community. Recently, XRD and computational modeling results have shown that structural F- for OH- substitution in layered silicates makes them more hydrophobic. Here, we use Grand Canonical Molecular Dynamics (GCMD) calculations to investigate how increasing the F-/(F-+OH-) ratio of a prototypical layered silicate (the smectite Na-hectorite) impacts the intercalation behavior of CO2 and H2O at elevated temperature and pressure. At the conditions of this study (T = 323 K, P = 90 bar, water-saturated CO2), increasing F- for OH- substitution causes decreasing total CO2+H2O intercalation, increasing CO2/(CO2+H2O) ratios in the interlayer galleries, and an increasing energy barrier to CO2 and H2O intercalation. CO2 intercalation is greatest at monolayer basal spacings, and the results support the idea that with Na+ as the exchangeable cation the interlayers must be propped open by some H2O molecules to allow CO2 to enter the interlayer galleries. The computed immersion energies suggest that the bilayer or a more expanded structure is the stable state under these conditions, in agreement with experimental results, and that the basal spacings of the minimum energy 2L structures increase with increasing F- for OH- substitution. These results are consistent with a wide range of experimental data for smectites at ambient conditions and elevated pressures and temperatures and suggest that F- for OH- substitution in conjunction with reduced structural charge and exchange with large, low charge cations may increase the ability of smectite minerals to incorporate hydrophobic species such as CH4, CO2, H2, and other organic compounds

    Developing National and Global Identities: Adolescent Identity Crisis Negotiation during a Two Week International Exchange

    Get PDF
    Literature elucidating the adolescent travel experience is scarce. In fact, travel and tourism scholarship to date largely glosses over the adolescent experience, focusing instead on the perspective of the whole family unit or the experience of the older adult traveler. The purpose of this study was to give voice to youth travelers by investigating the travel experiences of two male and six female adolescents from the South Eastern United States

    A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y.

    Get PDF
    Thousands die each year from sudden infant death syndrome (SIDS). Neither the cause nor basis for varied prevalence in different populations is understood. While 2 cases have been associated with mutations in type Valpha, cardiac voltage-gated sodium channels (SCN5A), the "Back to Sleep" campaign has decreased SIDS prevalence, consistent with a role for environmental influences in disease pathogenesis. Here we studied SCN5A in African Americans. Three of 133 SIDS cases were homozygous for the variant S1103Y. Among controls, 120 of 1,056 were carriers of the heterozygous genotype, which was previously associated with increased risk for arrhythmia in adults. This suggests that infants with 2 copies of S1103Y have a 24-fold increased risk for SIDS. Variant Y1103 channels were found to operate normally under baseline conditions in vitro. As risk factors for SIDS include apnea and respiratory acidosis, Y1103 and wild-type channels were subjected to lowered intracellular pH. Only Y1103 channels gained abnormal function, demonstrating late reopenings suppressible by the drug mexiletine. The variant appeared to confer susceptibility to acidosis-induced arrhythmia, a gene-environment interaction. Overall, homozygous and rare heterozygous SCN5A missense variants were found in approximately 5% of cases. If our findings are replicated, prospective genetic testing of SIDS cases and screening with counseling for at-risk families warrant consideration
    • …
    corecore