66 research outputs found

    Observations of the High Redshift Universe

    Get PDF
    (Abridged) In these lectures aimed for non-specialists, I review progress in understanding how galaxies form and evolve. Both the star formation history and assembly of stellar mass can be empirically traced from redshifts z~6 to the present, but how the various distant populations inter-relate and how stellar assembly is regulated by feedback and environmental processes remains unclear. I also discuss how these studies are being extended to locate and characterize the earlier sources beyond z~6. Did early star-forming galaxies contribute significantly to the reionization process and over what period did this occur? Neither theory nor observations are well-developed in this frontier topic but the first results presented here provide important guidance on how we will use more powerful future facilities.Comment: To appear in `First Light in Universe', Saas-Fee Advanced Course 36, Swiss Soc. Astrophys. Astron. in press. 115 pages, 64 figures (see http://www.astro.caltech.edu/~rse/saas-fee.pdf for hi-res figs.) For lecture ppt files see http://obswww.unige.ch/saas-fee/preannouncement/course_pres/overview_f.htm

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Bimodality of low-redshift circumgalactic O VI in non-equilibrium EAGLE zoom simulations

    Get PDF
    We introduce a series of 20 cosmological hydrodynamical simulations of L★ (M200 = 1011.7 − 1012.3M⊙) and group-sized (M200 = 1012.7 − 1013.3M⊙) haloes run with the model used for the EAGLE project, which additionally includes a non-equilibrium ionization and cooling module that follows 136 ions. The simulations reproduce the observed correlation, revealed by COS-Halos at z ∼ 0.2, between O VI column density at impact parameters b 106 K) promotes oxygen to higher ionization states, suppressing the O VI column density. The observed NO VI-sSFR correlation therefore does not imply a causal link, but reflects the changing characteristic ionization state of oxygen as halo mass is increased. In spite of the mass-dependence of the oxygen ionization state, the most abundant circumgalactic oxygen ion in both L★ and group haloes is O VI; O VI accounts for only 0.1% of the oxygen in group haloes and 0.9-1.3% with L★ haloes. Nonetheless, the metals traced by O VI absorbers represent a fossil record of the feedback history of galaxies over a Hubble time; their characteristic epoch of ejection corresponds to z > 1 and much of the ejected metal mass resides beyond the virial radius of galaxies. For both L★ and group galaxies, more of the oxygen produced and released by stars resides in the circumgalactic medium (within twice the virial radius) than in the stars and ISM of the galaxy

    The Chandra Deep protocluster survey : Lyα blobs are powered by heating, not cooling

    Get PDF
    We present the results of a 400 ks Chandra survey of 29 extended Lyα emitting nebulae (Lyα Blobs, LABs) in the z = 3.09 protocluster in the SS A22 field. We detect luminous X-ray counterparts in five LABs, implying a large fraction of active galactic nuclei (AGN) in LABs, f AGN = 17+12 -7% down to L 2-32 keV ~ 1044 erg s-1. All of the AGN appear to be heavily obscured, with spectral indices implying obscuring column densities of N H > 1023 cm-2. The AGN fraction should be considered a lower limit, since several more LABs not detected with Chandra show AGN signatures in their mid-infrared (mid-IR) emission. We show that the UV luminosities of the AGN are easily capable of powering the extended Lyα emission via photoionization alone. When combined with the UV flux from a starburst component, and energy deposited by mechanical feedback, we demonstrate that "heating" by a central source, rather than gravitational cooling is the most likely power source of LABs. We argue that all LABs could be powered in this manner, but that the luminous host galaxies are often just below the sensitivity limits of current instrumentation, or are heavily obscured. No individual LABs show evidence for extended X-ray emission, and a stack equivalent to a gsim9 Ms exposure of an average LAB also yields no statistical detection of a diffuse X-ray component. The resulting diffuse X-ray/Lyα luminosity limit implies there is no hot (T gsim 107 K) gas component in these halos, and also rules out inverse Compton scattering of cosmic microwave background photons, or local far-IR photons, as a viable power source for LABs
    • …
    corecore