444 research outputs found

    Experimental assembly of structures in EVA: Hardware morphology and development issues

    Get PDF
    A large body of data was obtained by MIT during neutral boyancy testing at Marshall Space Flight Center from 1980 to the present. These efforts, and the most significant results are summarized. The Experimental Assembly of Structure in EVA (EASE) flight experiment was undertaken to validate these results and flown on the STS 61-B in November 1985. The EASE experiment hardware is discussed and how the experiment goals dictate its size, shape, and operational characteristics, are illustrated

    Attitude Control Performance of IRVE-3

    Get PDF
    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission

    Association analysis of stem rust resistance in U.S. winter wheat

    Get PDF
    Citation: Zhang D, Bowden RL, Yu J, Carver BF, Bai G (2014) Association Analysis of Stem Rust Resistance in U.S. Winter Wheat. PLoS ONE 9(7): e103747. https://doi.org/10.1371/journal.pone.0103747Stem rust has become a renewed threat to global wheat production after the emergence and spread of race TTKSK (also known as Ug99) and related races from Africa. To elucidate U.S. winter wheat resistance genes to stem rust, association mapping was conducted using a panel of 137 lines from cooperative U.S. winter wheat nurseries from 2008 and simple sequence repeat (SSR) and sequence tagged site (STS) markers across the wheat genome. Seedling infection types were evaluated in a greenhouse experiment using six U.S. stem rust races (QFCSC, QTHJC, RCRSC, RKQQC, TPMKC and TTTTF) and TTKSK, and adult plant responses to bulked U.S. races were evaluated in a field experiment. A linearization algorithm was used to convert the qualitative Stakman scale seedling infection types for quantitative analysis. Association mapping successfully detected six known stem rust seedling resistance genes in U.S. winter wheat lines with frequencies: Sr6 (12%), Sr24 (9%), Sr31 (15%), Sr36 (9%), Sr38 (19%), and Sr1RS[superscript Amigo] (8%). Adult plant resistance gene Sr2 was present in 4% of lines. SrTmp was postulated to be present in several hard winter wheat lines, but the frequency could not be accurately determined. Sr38 was the most prevalent Sr gene in both hard and soft winter wheat and was the most effective Sr gene in the adult plant field test. Resistance to TTKSK was associated with nine markers on chromosome 2B that were in linkage disequilibrium and all of the resistance was attributed to the Triticum timopheevii chromosome segment carrying Sr36. Potential novel rust resistance alleles were associated with markers Xwmc326-203 on 3BL, Xgwm160-195 and Xwmc313-225 on 4AL near Sr7, Xgwm495-182 on 4BL, Xwmc622-147 and Xgwm624-146 on 4DL, and Xgwm334-123 on 6AS near Sr8. Xwmc326-203 was associated with adult plant resistance to bulked U.S. races and Xgwm495-182 was associated with seedling resistance to TTKSK

    Registration of hard white winter wheat germplasms KS14U6380R5, KS16U6380R10, and KS16U6380R11 with adult plant resistance to stem rust

    Get PDF
    Resistance to the Ug99 group of races of the stem rust fungus Puccinia graminis f. sp. tritici is limited in winter wheat (Triticum aestivum L.) germplasm adapted to the Great Plains of the United States. Our objective was to generate regionally adapted hard winter wheat germplasm with combinations of adult plant resistance genes that are expected to provide durable resistance. KS14U6380R5 (Reg. no. GP-1043, PI 689115), KS16U6380R10 (Reg. no. GP-1044, PI 689116), and KS16U6380R11 (Reg. no. GP-1045, PI 689117) were derived from backcrosses of the hard white winter wheat germplasm KS05HW14 to the stem rust-resistant Kenyan spring wheat cultivar ‘Kingbird’. KS14U6380R5, KS16U6380R11, and KS16U6380R10 were developed by pedigree selection and were initially evaluated as U6380-11-2R-0A, U6380-210-2R-0A, and U6380-148-4R-2T, respectively. The germplasms were developed by the USDA-ARS and jointly released with the Kansas State University Agricultural Experiment Station. These germplasms provide parents for development of hard winter wheat cultivars with durable resistance to stem rust

    Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wheat (<it>Triticum aestivum </it>L.) is a staple food crop worldwide. The wheat genome has not yet been sequenced due to its huge genome size (~17,000 Mb) and high levels of repetitive sequences; the whole genome sequence may not be expected in the near future. Available linkage maps have low marker density due to limitation in available markers; therefore new technologies that detect genome-wide polymorphisms are still needed to discover a large number of new markers for construction of high-resolution maps. A high-resolution map is a critical tool for gene isolation, molecular breeding and genomic research. Single feature polymorphism (SFP) is a new microarray-based type of marker that is detected by hybridization of DNA or cRNA to oligonucleotide probes. This study was conducted to explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome.</p> <p>Results</p> <p>Six wheat varieties of diverse origins (Ning 7840, Clark, Jagger, Encruzilhada, Chinese Spring, and Opata 85) were analyzed for significant probe by variety interactions and 396 probe sets with SFPs were identified. A subset of 164 unigenes was sequenced and 54% showed polymorphism within probes. Microarray analysis of 71 recombinant inbred lines from the cross Ning 7840/Clark identified 955 SFPs and 877 of them were mapped together with 269 simple sequence repeat markers. The SFPs were randomly distributed within a chromosome but were unevenly distributed among different genomes. The B genome had the most SFPs, and the D genome had the least. Map positions of a selected set of SFPs were validated by mapping single nucleotide polymorphism using SNaPshot and comparing with expressed sequence tags mapping data.</p> <p>Conclusion</p> <p>The Affymetrix array is a cost-effective platform for SFP discovery and SFP mapping in wheat. The new high-density map constructed in this study will be a useful tool for genetic and genomic research in wheat.</p

    Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp tritici isolates revealed by the comparative gene co-expression network and genome analyses

    Get PDF
    Citation: Rutter, W. B., Salcedo, A., Akhunova, A., He, F., Wang, S. C., Liang, H. Q., . . . Akhunov, E. (2017). Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp tritici isolates revealed by the comparative gene co-expression network and genome analyses. Bmc Genomics, 18, 20. doi:10.1186/s12864-017-3678-6Background: Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt). Results: The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub- network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors. Conclusions: Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen's ability to infect the host

    Alignment of Genetic and Physical Maps of Gibberella zeae

    Get PDF
    We previously published a genetic map of Gibberella zeae (Fusarium graminearum sensu lato) based on a cross between Kansas strain Z-3639 (lineage 7) and Japanese strain R-5470 (lineage 6). In this study, that genetic map was aligned with the third assembly of the genomic sequence of ++ strain PH-1 (lineage 7) using seven structural genes and 108 sequenced amplified fragment length polymorphism markers. Several linkage groups were combined based on the alignments, the nine original linkage groups were reduced to six groups, and the total size of the genetic map was reduced from 1,286 to 1,140 centimorgans. Nine supercontigs, comprising 99.2% of the genomic sequence assembly, were anchored to the genetic map. Eight markers (four markers from each parent) were not found in the genome assembly, and four of these markers were closely linked, suggesting that \u3e150 kb of DNA sequence is missing from the PH-1 genome assembly. The alignments of the linkage groups and supercontigs yielded four independent sets, which is consistent with the four chromosomes reported for this fungus. Two proposed heterozygous inversions were confirmed by the alignments; otherwise, the colinearity of the genetic and physical maps was high. Two of four regions with segregation distortion were explained by the two selectable markers employed in making the cross. The average recombination rates for each chromosome were similar to those previously reported for G. zeae. Despite an inferred history of genetic isolation of lineage 6 and lineage 7, the chromosomes of these lineages remain homologous and are capable of recombination along their entire lengths, even within the inversions. This genetic map can now be used in conjunction with the physical sequence to study phenotypes (e.g., fertility and fitness) and genetic features (e.g., centromeres and recombination frequency) that do not have a known molecular signature in the genome
    • …
    corecore