124 research outputs found

    Genome-wide interaction study of early-life smoking exposure on time-to-asthma onset in childhood

    Get PDF
    BACKGROUND: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. OBJECTIVE: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood. METHODS: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totaling 8,273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analyzed. RESULTS: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P=4.3x10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P<5x10-6 ) were found at three other loci: 20p12 (rs13037508 within MACROD2; P=4.9x10-7 ), 14q22 (rs7493885 near NIN; P=2.9x10-6 ) and 2p22 (rs232542 near CYP1B1; P=4.1x10-6 ). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings. CONCLUSION AND CLINICAL RELEVANCE: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms. This article is protected by copyright. All rights reserved

    Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population

    Get PDF
    BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin

    Meta-analysis of genome-wide linkage studies of asthma and related traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma and allergy are complex multifactorial disorders, with both genetic and environmental components determining disease expression. The use of molecular genetics holds great promise for the identification of novel drug targets for the treatment of asthma and allergy. Genome-wide linkage studies have identified a number of potential disease susceptibility loci but replication remains inconsistent. The aim of the current study was to complete a meta-analysis of data from genome-wide linkage studies of asthma and related phenotypes and provide inferences about the consistency of results and to identify novel regions for future gene discovery.</p> <p>Methods</p> <p>The rank based genome-scan meta-analysis (GSMA) method was used to combine linkage data for asthma and related traits; bronchial hyper-responsiveness (BHR), allergen positive skin prick test (SPT) and total serum Immunoglobulin E (IgE) from nine Caucasian asthma populations.</p> <p>Results</p> <p>Significant evidence for susceptibility loci was identified for quantitative traits including; BHR (989 pedigrees, n = 4,294) 2p12-q22.1, 6p22.3-p21.1 and 11q24.1-qter, allergen SPT (1,093 pedigrees, n = 4,746) 3p22.1-q22.1, 17p12-q24.3 and total IgE (729 pedigrees, n = 3,224) 5q11.2-q14.3 and 6pter-p22.3. Analysis of the asthma phenotype (1,267 pedigrees, n = 5,832) did not identify any region showing genome-wide significance.</p> <p>Conclusion</p> <p>This study represents the first linkage meta-analysis to determine the relative contribution of chromosomal regions to the risk of developing asthma and atopy. Several significant results were obtained for quantitative traits but not for asthma confirming the increased phenotype and genetic heterogeneity in asthma. These analyses support the contribution of regions that contain previously identified asthma susceptibility genes and provide the first evidence for susceptibility loci on 5q11.2-q14.3 and 11q24.1-qter.</p

    Genome Wide Association Study to predict severe asthma exacerbations in children using random forests classifiers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Personalized health-care promises tailored health-care solutions to individual patients based on their genetic background and/or environmental exposure history. To date, disease prediction has been based on a few environmental factors and/or single nucleotide polymorphisms (SNPs), while complex diseases are usually affected by many genetic and environmental factors with each factor contributing a small portion to the outcome. We hypothesized that the use of random forests classifiers to select SNPs would result in an improved predictive model of asthma exacerbations. We tested this hypothesis in a population of childhood asthmatics.</p> <p>Methods</p> <p>In this study, using emergency room visits or hospitalizations as the definition of a severe asthma exacerbation, we first identified a list of top Genome Wide Association Study (GWAS) SNPs ranked by Random Forests (RF) importance score for the CAMP (Childhood Asthma Management Program) population of 127 exacerbation cases and 290 non-exacerbation controls. We predict severe asthma exacerbations using the top 10 to 320 SNPs together with age, sex, pre-bronchodilator FEV1 percentage predicted, and treatment group.</p> <p>Results</p> <p>Testing in an independent set of the CAMP population shows that severe asthma exacerbations can be predicted with an Area Under the Curve (AUC) = 0.66 with 160-320 SNPs in comparison to an AUC score of 0.57 with 10 SNPs. Using the clinical traits alone yielded AUC score of 0.54, suggesting the phenotype is affected by genetic as well as environmental factors.</p> <p>Conclusions</p> <p>Our study shows that a random forests algorithm can effectively extract and use the information contained in a small number of samples. Random forests, and other machine learning tools, can be used with GWAS studies to integrate large numbers of predictors simultaneously.</p

    Adult onset asthma and interaction between genes and active tobacco smoking: The GABRIEL consortium.

    Get PDF
    BACKGROUND: Genome-wide association studies have identified novel genetic associations for asthma, but without taking into account the role of active tobacco smoking. This study aimed to identify novel genes that interact with ever active tobacco smoking in adult onset asthma. METHODS: We performed a genome-wide interaction analysis in six studies participating in the GABRIEL consortium following two meta-analyses approaches based on 1) the overall interaction effect and 2) the genetic effect in subjects with and without smoking exposure. We performed a discovery meta-analysis including 4,057 subjects of European descent and replicated our findings in an independent cohort (LifeLines Cohort Study), including 12,475 subjects. RESULTS: First approach: 50 SNPs were selected based on an overall interaction effect at p<10-4. The most pronounced interaction effect was observed for rs9969775 on chromosome 9 (discovery meta-analysis: ORint = 0.50, p = 7.63*10-5, replication: ORint = 0.65, p = 0.02). Second approach: 35 SNPs were selected based on the overall genetic effect in exposed subjects (p <10-4). The most pronounced genetic effect was observed for rs5011804 on chromosome 12 (discovery meta-analysis ORint = 1.50, p = 1.21*10-4; replication: ORint = 1.40, p = 0.03). CONCLUSIONS: Using two genome-wide interaction approaches, we identified novel polymorphisms in non-annotated intergenic regions on chromosomes 9 and 12, that showed suggestive evidence for interaction with active tobacco smoking in the onset of adult asthma

    Relation of DNA Methylation of 5′-CpG Island of ACSL3 to Transplacental Exposure to Airborne Polycyclic Aromatic Hydrocarbons and Childhood Asthma

    Get PDF
    In a longitudinal cohort of ∼700 children in New York City, the prevalence of asthma (>25%) is among the highest in the US. This high risk may in part be caused by transplacental exposure to traffic-related polycyclic aromatic hydrocarbons (PAHs) but biomarkers informative of PAH-asthma relationships is lacking. We here hypothesized that epigenetic marks associated with transplacental PAH exposure and/or childhood asthma risk could be identified in fetal tissues. Mothers completed personal prenatal air monitoring for PAH exposure determination. Methylation sensitive restriction fingerprinting was used to analyze umbilical cord white blood cell (UCWBC) DNA of 20 cohort children. Over 30 DNA sequences were identified whose methylation status was dependent on the level of maternal PAH exposure. Six sequences were found to be homologous to known genes having one or more 5′-CpG island(s) (5′-CGI). Of these, acyl-CoA synthetase long-chain family member 3 (ACSL3) exhibited the highest concordance between the extent of methylation of its 5′-CGI in UCWBCs and the level of gene expression in matched fetal placental tissues in the initial 20 cohort children. ACSL3 was therefore chosen for further investigation in a larger sample of 56 cohort children. Methylation of the ACSL3 5′-CGI was found to be significantly associated with maternal airborne PAH exposure exceeding 2.41 ng/m3 (OR = 13.8; p<0.001; sensitivity = 75%; specificity = 82%) and with a parental report of asthma symptoms in children prior to age 5 (OR = 3.9; p<0.05). Thus, if validated, methylated ACSL3 5′CGI in UCWBC DNA may be a surrogate endpoint for transplacental PAH exposure and/or a potential biomarker for environmentally-related asthma. This exploratory report provides a new blueprint for the discovery of epigenetic biomarkers relevant to other exposure assessments and/or investigations of exposure-disease relationships in birth cohorts. The results support the emerging theory of early origins of later life disease development

    Associations between Nitric Oxide Synthase Genes and Exhaled NO-Related Phenotypes according to Asthma Status

    Get PDF
    International audienceBACKGROUND: The nitric oxide (NO) pathway is involved in asthma, and eosinophils participate in the regulation of the NO pool in pulmonary tissues. We investigated associations between single nucleotide polymorphisms (SNPs) of NO synthase genes (NOS) and biological NO-related phenotypes measured in two compartments (exhaled breath condensate and plasma) and blood eosinophil counts. METHODOLOGY: SNPs (N = 121) belonging to NOS1, NOS2 and NOS3 genes were genotyped in 1277 adults from the French Epidemiological study on the Genetics and Environment of Asthma (EGEA). Association analyses were conducted on four quantitative phenotypes: the exhaled fraction of NO (Fe(NO)), plasma and exhaled breath condensate (EBC) nitrite-nitrate levels (NO2-NO3) and blood eosinophils in asthmatics and non-asthmatics separately. Genetic heterogeneity of these phenotypes between asthmatics and non-asthmatics was also investigated. PRINCIPAL FINDINGS: In non-asthmatics, after correction for multiple comparisons, we found significant associations of Fe(NO) levels with three SNPs in NOS3 and NOS2 (P ≤ 0.002), and of EBC NO2-NO3 level with NOS2 (P = 0.002). In asthmatics, a single significant association was detected between Fe(NO) levels and one SNP in NOS3 (P = 0.004). Moreover, there was significant heterogeneity of NOS3 SNP effect on Fe(NO) between asthmatics and non-asthmatics (P = 0.0002 to 0.005). No significant association was found between any SNP and NO2-NO3 plasma levels or blood eosinophil counts. CONCLUSIONS: Variants in NO synthase genes influence Fe(NO) and EBC NO2-NO3 levels in adults. These genetic determinants differ according to asthma status. Significant associations were only detected for exhaled phenotypes, highlighting the critical relevance to have access to specific phenotypes measured in relevant biological fluid

    Vitamin D levels and susceptibility to asthma, elevated immunoglobulin E levels, and atopic dermatitis: A Mendelian randomization study.

    Get PDF
    BACKGROUND: Low circulating vitamin D levels have been associated with risk of asthma, atopic dermatitis, and elevated total immunoglobulin E (IgE). These epidemiological associations, if true, would have public health importance, since vitamin D insufficiency is common and correctable. METHODS AND FINDINGS: We aimed to test whether genetically lowered vitamin D levels were associated with risk of asthma, atopic dermatitis, or elevated serum IgE levels, using Mendelian randomization (MR) methodology to control bias owing to confounding and reverse causation. The study employed data from the UK Biobank resource and from the SUNLIGHT, GABRIEL and EAGLE eczema consortia. Using four single-nucleotide polymorphisms (SNPs) strongly associated with 25-hydroxyvitamin D (25OHD) levels in 33,996 individuals, we conducted MR studies to estimate the effect of lowered 25OHD on the risk of asthma (n = 146,761), childhood onset asthma (n = 15,008), atopic dermatitis (n = 40,835), and elevated IgE level (n = 12,853) and tested MR assumptions in sensitivity analyses. None of the four 25OHD-lowering alleles were associated with asthma, atopic dermatitis, or elevated IgE levels (p ≥ 0.2). The MR odds ratio per standard deviation decrease in log-transformed 25OHD was 1.03 (95% confidence interval [CI] 0.90-1.19, p = 0.63) for asthma, 0.95 (95% CI 0.69-1.31, p = 0.76) for childhood-onset asthma, and 1.12 (95% CI 0.92-1.37, p = 0.27) for atopic dermatitis, and the effect size on log-transformed IgE levels was -0.40 (95% CI -1.65 to 0.85, p = 0.54). These results persisted in sensitivity analyses assessing population stratification and pleiotropy and vitamin D synthesis and metabolism pathways. The main limitations of this study are that the findings do not exclude an association between the studied outcomes and 1,25-dihydoxyvitamin D, the active form of vitamin D, the study was underpowered to detect effects smaller than an OR of 1.33 for childhood asthma, and the analyses were restricted to white populations of European ancestry. This research has been conducted using the UK Biobank Resource and data from the SUNLIGHT, GABRIEL and EAGLE Eczema consortia. CONCLUSIONS: In this study, we found no evidence that genetically determined reduction in 25OHD levels conferred an increased risk of asthma, atopic dermatitis, or elevated total serum IgE, suggesting that efforts to increase vitamin D are unlikely to reduce risks of atopic disease

    Meta-analysis identifies seven susceptibility loci involved in the atopic March

    Get PDF
    Eczema often precedes the development of asthma in a disease course called the a 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10 a'8) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10 a'9). Additional susceptibility loci identified
    corecore