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ABSTRACT 

Background: Asthma, a heterogeneous disease with variable age of onset, results from the 

interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure 

is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS 

exposure in asthma.  

Objective: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma 

onset (TAO) in childhood. 

Methods: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma 

onset in childhood in five European-ancestry studies (totaling 8,273 subjects) using Cox 

proportional-hazard model. The results of all five genome-wide analyses were meta-analyzed. 

Results: The 13q21 locus showed genome-wide significant interaction with ELTS exposure 

(P=4.3x10-8 for rs7334050 within KLHL1 with consistent results across the five studies). 

Suggestive interactions (P<5x10-6) were found at three other loci: 20p12 (rs13037508 within 

MACROD2; P=4.9x10-7), 14q22 (rs7493885 near NIN; P=2.9x10-6) and 2p22 (rs232542 near 

CYP1B1; P=4.1x10-6). Functional annotations and the literature showed that the lead SNPs at these 

four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be 

associated with exposure to tobacco smoke components, which strongly support our findings. 

Conclusion and Clinical Relevance: We identified novel candidate genes interacting with ELTS 

exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance 

related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm 

these findings and to shed light on the underlying mechanisms. 

Keywords: gene-environment interaction, environmental tobacco smoke exposure, childhood 

asthma, time-to-asthma onset 
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INTRODUCTION 

Asthma, one of the most common chronic diseases, results from the interplay between genetic and 

environmental factors. Asthma has variable age of onset and variable expression over the life span. 

It is recognized that childhood-onset asthma may be distinct from later-onset asthma and may 

represent a more homogeneous subgroup often associated with allergy. The genetic component of 

asthma is substantial but the asthma loci, identified so far, explain only a part of the genetic risk 

[1]. One potential reason for this missing heritability is gene-environment (GxE) interaction 

because some genetic variants may confer risk only in the presence of environmental exposures.  

 Tobacco smoke exposure in early-life is a major risk factor for asthma. Interactions between 

genetic variants and early-life tobacco smoke (ELTS) exposure on asthma were first identified by 

genome-wide linkage scans and candidate gene studies [2]. ELTS exposure was then found to 

increase the risk of early-onset asthma associated with the 17q12-21 variants [3] identified by the 

first asthma GWAS [4]. Recently, a genome-wide interaction study (GWIS) of childhood-onset 

asthma reported interactions between in utero exposure to maternal smoking and the 18p11 locus 

and between exposure to parental smoking in childhood and the 6q26 locus but none of these 

interactions reached genome-wide significance [5]. A subsequent GWIS conducted for adult-onset 

asthma and active smoking revealed suggestive interactions on chromosomes 9p23 and 12p12 [6]. 

Therefore, similarly to the previously reported heterogeneity of SNP effect on asthma risk 

according to age of onset of asthma [3,7], the SNP-smoke exposure interactions may differ between 

childhood-onset and later-onset asthma and may vary according to time of exposure. Only two 

GWAS have considered either age of asthma onset in asthmatic children [8] or time-to-asthma 

onset (TAO) in asthmatic and non-asthmatic subjects [9] and have led to the discovery of new 

asthma loci, but no GWIS has yet taken into account the time-to-asthma onset.  
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 In order to identify new asthma risk loci, we conducted a genome-wide interaction study of 

ELTS exposure on time-to-asthma onset in childhood in five European ancestry studies.  

 

METHODS 

Study populations  

The total sample consisted of 8273 subjects of European-ancestry (2874 subjects with childhood-

onset asthma and 5399 non-asthmatic subjects) from five studies, which were part of the Gabriel 

asthma consortium [7]. The five datasets were from three population-based studies (the ALSPAC 

[10] birth corhort from UK, the pan-European ECRHS cohort study [11] including sixteen centres 

from eight countries and the cross-sectional GABRIELA [12] survey conducted in rural areas of 

Austria, Germany and Switzerland) and two family-based studies (the French EGEA cohort study 

[13] and the French-Canadian SLSJ study [14]). A detailed description of these studies can be 

found in the Supplementary Information. These were the only Gabriel consortium studies of 

sufficient sample size that had data on age of asthma onset, ELTS exposure and imputed SNP data 

(Table S1-A). Written informed consent was signed by all participants or by kin or guardians for 

minors/children. Ethical approval was obtained for each study from the appropriate institutional 

ethics committees (ethical approval numbers are provided in the Supplementary Information).  

 

Definition of time to asthma onset and ELTS exposure 

The analysis of time-to-asthma onset phenotype requires to specify the event (here, asthma 

occurrence) and the time to event. Information on occurrence of asthma was based on report of 

doctor’s diagnosis and/or on standardized questionnaires, as used in previous GWAS [7,9]. 

Childhood asthma was defined as having asthma at or before 16 years of age. The time to event 

was the time (in years) that has elapsed from birth to occurrence of childhood asthma during the 
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follow-up period. For those subjects who had childhood asthma before the end of the follow-up 

period, time to event was the age of onset of childhood asthma while for those subjects who were 

free of asthma upon last follow-up, time to event was their age at last follow-up. Individuals who 

developed asthma after 16 years of age were excluded. ELTS exposure was defined as being 

exposed to maternal smoking during pregnancy and/or parental smoking in early childhood. For 

more than 70% of the subjects included in the present study, the definition of the ELTS exposure 

was based on an exposure before 5 years of age. 

 

Genotyping and imputation  

SNP genotyping and imputation and quality control (QC) criteria are summarized in Table S1-B. 

Genotyping was carried out using the Illumina Human610-Quad array for all studies except for 

ALSPAC where the Illumina HumanHap550-Quad array was used. We used HapMap2 imputed 

data as available in Gabriel consortium studies. Imputation was performed as previously described 

[7]. We kept for analysis SNPs with imputation quality score (rsq) ≥ 0.5 and minor allele frequency 

≥ 1%, making a total of 2.11 million SNPs for analysis.  

 

Gene-environment-wide interaction analysis 

Instead of artificially splitting the five datasets into discovery and replication sets, we conducted a 

meta-analysis of all five datasets to maximize statistical power. This approach has been previously 

used for the time-to-asthma onset GWAS [9]. As shown in Figure 1, each dataset was split in 

ELTS-exposed (ELTS+) and ELTS-unexposed (ELTS-) subjects. A genome-wide association 

analysis of TAO was conducted in each stratified dataset using the Cox proportional-hazard model. 

This model requires to specify an event indicator and time to event. For subjects who developed 

childhood asthma during the follow-up period, the event indicator was coded 1 and the time to 
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event was the age of onset of childhood asthma while for subjects who did not have asthma during 

the follow-up period, the event indicator was coded 0 and the time to event was the age at last 

follow-up. The hazard ratio of individual SNPs for TAO was estimated using the Cox model while 

adjusting for sex and the first four principal components to correct for population stratification and 

assuming an additive genetic model for SNP effect. A robust sandwich estimator of the variance 

with cluster on family was used to take into account familial dependencies in the family studies. 

The complex sampling design of the GABRIELA study was taken into account by using survey 

regression techniques to estimate robust standard errors (‘svy’ command in Stata). In each 

ELTS+/ELTS- stratum, the hazard ratios (HRs) estimated from each of the five studies were 

combined using a fixed-effect meta-analysis with inverse variance weighting. A hazard ratio 

greater (lower) than one means an increased (decreased) risk of childhood asthma occurrence at a 

given time (given unaffected before) among all subjects at risk at that time that is associated with 

one unit increase in the number of effect alleles in the genotype. The SNPxELTS interaction was 

estimated as the difference (DHR) between the ELTS+ and ELTS- meta-analyzed HRs (on the log 

scale); the variance of DHR was estimated, as previously explained [15]. The test statistic for 

SNPxELTS interaction (DHR divided by the square root of its variance) was compared to a standard 

normal distribution. A SNPxELTS interaction was declared as genome-wide significant if it 

reached the threshold of 5×10-8; an interaction reaching the threshold of 5x10-6 was considered as 

suggestive. Furthermore, the homogeneity of SNP HR estimates across all five studies in each 

ELTS+/ELTS- stratum was assessed using the Cochran’s Q homogeneity test, and the extent of 

heterogeneity was estimated using the I2 statistic, which describes the percentage of variation 

across studies that is due to heterogeneity rather than to chance [16]. All analyses were conducted 

using Stata© V14.1.  
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Functional annotations of the loci interacting with ELTS exposure 

To provide biological insight into our findings, we conducted a bioinformatic assessment of the 

loci detected by our genome-wide interaction meta-analysis. At each locus, we defined a list of 

SNPs to be interrogated that included the most significant SNP interacting with ELTS (designated 

as lead SNP) and all SNPs in LD with the lead SNP (r2 comprised between 0.5 and 1). To pinpoint 

the most likely candidate genes at the identified loci, we searched for cis-expression quantitative 

trait loci (eQTLs) within at most 1 Mb of each investigated SNP by interrogating four eQTL studies 

in the blood (peripheral blood [17], lymphoblastoid cell lines [18,19], monocytes [20]) and the 

GTEx database that contains eQTL data from many tissues [21]. To complement the eQTL 

analysis, we searched for missense variants potentially tagged by the interaction signals using the 

HaploReg v4.1 tool [22]. To get greater insight into how the genetic variants interacting with ELTS 

may functionally influence TAO, we investigated whether the SNPs from the aforementioned SNP 

set were located in the vicinity of cis-regulatory DNA elements and transcription factor (TF) 

binding sites, using ROADMAP/ENCODE functional genomics data generated in a wide range of 

human cell types [23] and summarized in HaploReg v4.1 [22]. We also conducted a search in the 

Phenoscanner database [24] to assess whether the SNPs were previously reported in genetic 

association studies with diseases and traits as well as molecular phenotypes including DNA 

methylation.  
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RESULTS 

The flow chart of the study as well as the sample size of each of the five datasets by ELTS+/ELTS- 

stratum (total n=8273, of which 3187 were ELTS+ and 5086 were ELTS-) are shown in Figure 1. 

 

Gene-environment-wide interaction analysis 

The Manhattan plot of interaction P-values for the genome-wide interaction meta-analysis of ELTS 

exposure on TAO is shown in Figure 2. There was little inflation in the interaction test statistics 

(QQ plot in Figure S1, genomic inflation factor (lambda) = 1.003). A genome-wide significant 

interaction with ELTS exposure was found at the 13q21 locus (P=4.3x10-8 for rs7334050). Besides 

the lead SNP at that locus, there were five additional variants that showed suggestive interactions 

(1.3x10-7 < P < 3.9x10-6; Table S2). Suggestive interactions (P≤5x10-6) were also observed at three 

other loci on chromosomes 20p12, 14q22 and 2p22. The results at all four loci are shown in Table 

1 for the lead SNPs and in Table S2 for the additional SNPs. The G minor allele (MAF=0.14) of 

the significant SNP, rs7334050, at 13q21 conferred a hazard ratio higher than one in ELTS exposed 

subjects (HRELTS+ = 1.34, 95% Confidence Interval (CI), 1.19-1.52) and a hazard ratio lower than 

one in unexposed subjects (HRELTS- = 0.85, 95% CI, 0.76-0.95). The SNPxELTS interaction hazard 

ratio was always in the same direction for all five studies (ranging from 1.16 to 3.39). There was 

homogeneity of rs7334050 HR estimates across the five studies in each ELTS+/ELTS- stratum (P 

for Cochran’s Q test >0.31; the I2 estimates were equal to 0.0 in both ELTS+ and ELTS- strata; 

Table S2 and Figure 3 for forest plot). All lead SNPs at the other three loci showed an opposite 

direction of effect according to exposure (Table 1) with consistent hazard ratios across studies in 

both ELTS+/ELTS- strata (P-values for Cochran’s Q test being greater than 0.15; Table S2 and 

Figure S2 for forest plots).  
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Functional annotations of the loci interacting with ELTS exposure 

The search for cis-eQTLs at the four loci detected by this GWIS showed that the lead SNP rs232542 

at 2p22 and three proxies (r2 >0.99) were strong cis-eQTLs for the CYP1B1 gene (7.0x10-34≤ P 

≤3.6x10-33) in the blood [17]. No cis-eQTL was found at the other three loci. However, the 13q21 

lead SNP (rs7334050) is located in an intron of KLHL1, which is the only protein coding gene 

within 1 Mb on each side of that SNP. Similarly, the lead SNP (rs13037508) at 20p12 is an intronic 

variant in MACROD2, the sole protein coding gene within 500 kb of that SNP. The lead SNP 

(rs7493885) at 14q22 is closest to NIN and is in LD (r2=0.65) with SNPs within NIN promoter. 

Moreover, the interrogated SNPs at all four loci did not tag any missense variant. 

The colocalization of lead SNPs and proxies at the four loci with regulatory elements are shown in 

Table 2 and Table S3. The lead KLHL1 SNP maps to binding sites of transcription factors (TFs) 

and a nearby SNP in strong LD (r2=0.87) maps to histone marks in fetal lung and DNase I 

hypersensitive sites (DHSs) in hematopoietic stem cells. The lead SNPs (and proxies) at the other 

three loci colocalize with histone marks and/or DHSs in blood cells and the lungs and TF binding 

sites. Notably, these TFs include CTCF at 2p22, 14q22 and 20p12 loci and Ahr (Arhyl hydrocarbon 

receptor) and its partner Arnt (Arhyl hydrocarbon receptor nuclear translocator) at 14q22. CTCF 

functions as a transcriptional activator, repressor or insulator protein. It was recently shown that 

CTCF is a major driver of gene co-expression in the airways of asthmatic patients [25]. The Ahr 

and Arnt TFs play a major role in the regulation of biological responses to tobacco smoke 

components [26]. Finally, interrogation of the Phenoscanner database showed that the lead SNPs 

at all four loci were strongly associated with DNA methylation levels in the whole blood (Table 

2). Associations of DNA methylation with 2p22 and 14q22 lead SNPs were also observed in 

neutrophils and immune cells. As shown in Table 2, the G allele of rs7334050 (13q21) and A allele 
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of rs13037508 (20p12) were associated with higher methylation while the G allele of rs7493885 

(14q22) and C allele of rs232542 (2p22) were associated with lower methylation. 
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DISCUSSION 

To our knowledge, this is the first study to examine SNP-by-ELTS exposure interactions on time-

to-asthma onset using a genome-wide approach. We identified a significant interaction with ELTS 

exposure at the 13q21 locus and suggestive interactions at three other loci on chromosomes 2p22, 

14q22 and 20p12. The evidence for these interactions rests on the results obtained in five large 

European-ancestry studies and the consistency of results across studies.  

 The SNP (rs7334050) showing significant interaction with ELTS exposure is located within 

the Kelch-like 1 (KLHL1) gene. KLHL1 encodes a neuronal actin-binding protein that modulates 

voltage-gated calcium channels [27], known to play a role in airway smooth muscle contraction, 

cytokine production and airway inflammation [28]. Cigarette smoke was shown to enhance the 

expression of Ca2+ regulatory proteins leading to increased cell proliferation of airway smooth 

muscle and cytokine generation [29]. Interestingly, KLHL1 showed increased mutation frequency 

in lung tumors after exposure to benzopyrene [30] and is located nearby newborn blood DNA 

methylation modifications associated with prenatal exposure to arsenic [31]. Benzopyrene and 

arsenic are both known components of cigarette smoke. 

 Although the other three loci did not reach genome-wide significance, they harbor relevant 

candidates with biological function related to tobacco smoke exposure. The 20p12 lead SNP is 

within MACROD2, a gene encoding a deacetylase involved in removing ADP-ribose from mono-

ADP-ribosylated proteins. This gene is part of the epigenetic signature of cigarette smoking and 

was found to colocalize with differentially methylated CpG sites in former smokers that never 

returned to never-smoker levels after 30 years of smoking cessation. The 14q22 lead SNP is located 

nearby NIN, which encodes a protein with a key role in ciliogenesis [32]. Genes involved in cilia 

function have been previously reported to interact with tobacco smoke exposure, either in early life 

for DNAH9 on BHR [2] or in childhood for PACRG on childhood asthma [5]. A proxy of the 14q22 
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lead SNP colocalizes with AhR and Arnt TF binding sites, which play a crucial role in the 

biological response to polyaromatic hydrocarbons, and newborn blood DNA methylation changes 

near NIN were associated with maternal smoking during pregnancy [33]. Finally, at 2p22, the 

CYP1B1 gene, whose expression is strongly associated with SNPs interacting with ELTS in this 

study, encodes a member of the cytochrome P450 superfamily of enzymes which metabolizes 

tobacco smoke components. The induction of CYP1B1 expression in response to smoke exposure 

was recently confirmed by an epigenome-wide association study of cigarette smoking in lung cells 

[34]. Moreover, the CYP1B1 locus, harboured DNA methylation changes associated with maternal 

smoking during pregnancy [33], prenatal exposure to drinking water arsenic [31] or active smoking 

[35]. Therefore, candidate genes at all four loci identified by this study show alterations (somatic 

mutations and/or DNA methylation changes) related to tobacco smoke exposure, which strongly 

support our statistical findings. Moreover, for three of these loci, the CpG sites associated with 

prenatal exposure to arsenic (KLHL1), smoking during pregnancy (NIN, CYP1B1) or active 

smoking (CYP1B1) were in close vicinity (from 0 to 23 kb) with the respective DNA methylation 

changes associated with the ELTS-interacting lead SNPs at each of these loci. We also observed 

that the effect alleles of 13q21 and 20p12 lead SNPs were associated with higher methylation while 

the effect alleles of 2p22 and 14q22 lead SNPs were associated with lower methylation. However, 

the relationships between genetic variation, cis-DNA methylation and cis-gene expression are quite 

complex [36,37] and require thorough investigations. Therefore, further asthma studies integrating 

genetic, epigenetic and gene expression data together with ELTS exposure in the same dataset are 

needed to confirm these results and uncover the underlying mechanisms. 

 To our knowledge, none of our findings have been previously reported by asthma GWAS 

(GWAS-Catalog of Published Genome-Wide Association Studies [38] and the Phenoscanner 

database [24]) or by asthma GWIS. One of the two suggestive interactions, previously found by 
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the sole GWIS of smoke exposure on childhood asthma [5], was replicated in our study (P=1.5x10-

3 at 18p11 reported for in utero exposure) while the other one was not (P=0.86 at 6q26 reported for 

childhood exposure). None of the loci identified in our study was reported by that published study 

except for one SNP (rs4670230) on chromosome 2p22 that modestly interacted with in utero 

exposure (P=2.1x10-4) but was not correlated with our lead signal (r2=0). The published study 

discovery dataset, which underwent GWI analysis, and the current study had comparable sample 

sizes. However, the difference in the results might be partly due to differences in the definition of 

tobacco smoke exposure (the overall proportion of exposed subjects was 13% for in utero exposure 

and 51% for childhood exposure in the published study versus 36% for early-life exposure in this 

study), the outcome examined (asthma status versus time-to-asthma onset) and the model used for 

analysis (logistic regression versus Cox model).  

 Up to now, few GWIS have been conducted for asthma-related phenotypes and only one 

reported a genome-wide significant result for a rare variant (MAF=1.5%) interacting with dust mite 

exposure on lung function [39]. One of the difficulties in GWIS is the need of large scale studies 

to detect significant interaction, which in turn might be affected by heterogeneity in study designs, 

outcome and exposure definitions of the participating studies. To overcome these limitations, this 

study was restricted to childhood-onset asthma and we paid attention to use a definition of ELTS 

exposure so that exposure was likely to occur before the onset of asthma. We also checked that less 

than 5% of SNPs showed heterogeneity of HR estimates across studies in either ELTS+ or ELTS- 

group (Cochran’s test P-values ≤0.05), showing that potential phenotypic differences across studies 

induced a small amount of genetic heterogeneity and, therefore, had a minor impact on our results. 

We meta-analyzed all five studies to maximize statistical power. Power computation for a sample 

of the same size as the total sample of all five studies indicated that our GWIS had 80% power of 

detecting a SNPxELTS interaction hazard ratio of 1.8 or higher when the MAF is at least equal to 
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0.15. However, we acknowledge that this study did not have power to detect SNPs with smaller 

allele frequencies. Our findings were supported by the consistency of results across the five studies 

at all four loci. We also verified that all studies contributed to the interaction signals: for example, 

for the 13q21 genome-wide significant signal, the study-specific contribution (estimated by the 

ratio of the interaction test statistic of each study to the meta-analyzed interaction test statistic) 

ranged from 9% to 45%. Similar results were observed at the other three loci detected by this 

GWIS. Even though interactions of these three loci with ELTS exposure did not reach genome-

wide significance, combining statistical results with biological and functional data greatly 

strengthened the evidence for the potential involvement of these loci. Moreover, our study which 

includes more than 8000 subjects, stands among the largest studies considered to date in GWIS of 

asthma phenotypes.  

We detected SNPs that showed an opposite direction of effect according to exposure, as previously 

reported at several loci for asthma and other diseases [40]. It has been generally observed that the 

latter pattern of interaction is the one detected with highest power by the one degree-of-freedom 

SNP-by-ELTS exposure interaction test as performed in this study. We acknowledge that our study 

might not have enough power to detect other interaction patterns such as a genetic effect in one of 

the exposure groups and no effect in the other group or a SNP effect in the same direction but of 

different magnitude in the two groups. This is why we did not confirm the previously identified 

interaction of ELTS exposure with 17q12-21 variants [3] which had a higher effect in the ELTS 

exposed than unexposed group. However, we verified that this locus was detected by using a joint 

test of both SNP effect and SNP x ELTS interaction in TAO analysis (results not shown). All these 

results are in agreement with previous simulation studies which concluded that none of the many 

gene-environment-wide interaction models is universally the most powerful approach and the 

results of an analysis depend on the unknown underlying GxE model [41].  
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 In conclusion, this study identified new loci interacting with ELTS exposure on childhood 

asthma. Candidate genes at these loci have biologically relevant functions related to tobacco smoke 

exposure. The colocalization of the ELTS-interacting variants with regulatory elements, their 

association with DNA methylation in the blood and the presence of nearby DNA methylation 

alterations associated with tobacco smoke exposure prompts for further epigenetic and functional 

studies to provide more insight into the underlying mechanisms. 
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Figure Legends 

FIGURE 1. Flow chart of the genome-wide interaction study of early-life tobacco smoke 

(ELTS) exposure on time-to-asthma onset in childhood. This figure shows the number of 

subjects (N) by study in each ELTS exposure stratum.  

 

FIGURE 2. Manhattan plot of the gene-environment-wide interaction meta-analysis for 

time-to-asthma onset in childhood. The x axis represents chromosomal location and the 

y axis represents -log10(P) for tests of interaction between individual SNPs and ELTS 

exposure on time-to-asthma onset. The red horizontal line denotes the genome-wide 

significant threshold of P=5x10-8 and the black dashed horizontal line a suggestive 

threshold of P=5x10-6. 

 

FIGURE 3. Forest Plot of the 13q21 lead SNP (rs7334050) according to ELTS exposure. 

Hazard ratios (HR) and 95% Confidence Intervals (CI) are plotted by study and by ELTS 

exposure stratum. The combined HR estimates over all five studies in each stratum and 

the combined SNP by ELTS exposure interaction HR are plotted as a diamond. 
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TABLE 1. Loci showing interaction (P ≤ 5x10-6) with early-life tobacco smoke (ELTS) exposure on time-to-asthma onset in childhood  

CHR SNP 

Position 
(kb, 

build 
37) 

Closest Gene 
(distance of 

SNP to gene in 
kb) 

E/R  EAF 

SNP x ELTS 
interactiona 

SNP effect in subjects 
exposed to ELTS 

SNP effect in subjects  
non-exposed to ELTS 

HRInt [95% CI] 
2-sided 

P HRELTS+ [95% CI] 
2-sided 

P HRELTS‐ [95% CI] 2-sided P 

2p22 rs232542 38 328 CYP1B1 (25) C/T 0.69 1.33[1.18-1.50] 4.1x10-6 1.18[1.07-1.30] 7.0x10-4 0.89[0.82-0.96] 1.7x10-3 

13q21 rs7334050 70 645 KLHL1 (0) G/T 0.14 1.58[1.34-1.86] 4.3x10-8 1.34[1.19-1.52] 2.6x10-6 0.85[0.76-0.95] 3.2x10-3 

14q22 rs7493885 51 317 NIN (20) G/T 0.27 1.37[1.20-1.56] 2.9x10-6 1.16[1.05-1.29] 2.7x10-3 0.85[0.78-0.93] 2.5x10-4 

20p12 rs13037508 14 928 MACROD2 (0) A/T 0.63 1.48[1.27-1.72] 4.9x10-7 1.20 [1.06-1.35] 3.6x10-3 0.81[0.74-0.89] 7.9x10-6 

CHR, chromosome; SNP, single nucleotide polymorphism; E, effect allele / R, Reference allele; EAF, effect allele frequency; HR, hazard ratio; CI: 
confidence interval. In bold, SNP showing interaction with ELTS at the genome-wide significance level of P ≤ 5x10-8. 
aThe interaction effect size between SNP and ELTS exposure was estimated as the difference between the ELTS+ and ELTS- combined SNP effect sizes 
obtained from the fixed-effects meta-analyses of the five studies in each ELTS+/ELTS- stratum (as shown in Figure 1). 
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TABLE 2. Functional annotations of SNPs significant (13q21) and suggestive (20p12, 14q22 and 2p22) loci interacting with ELTS 

exposure on time-to-asthma onset in childhood 
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   Regulatory elements  DNA methylation 
Locus SNP 

(r2 with 
lead SNP) 

Position 
(kb) 

Histone 
marksa 

DNase I hyper 
sensitive sitesa 

Transcription factor 
binding sites 

 CpG site 
(position, kb) 

Tissue 2-sided P b 
(Effect allele: 
Direction of 
association) 

Study 

13q21 rs7334050 70 645 No No FOXL1, PBX-1, 
POU1F1 

 cg14273027 
(70 682) 

Blood 1.1x10-6

(G: positive) 
BIOSQTL[37] 

 rs73214641 
    (0.87) 

70 653 Yes 
(fetal lung) 

Yes 
(blood stem 
cells) 

      

20p12 
 

rs13037508 14 928 
 

Yes 
(lung, fetal 
lung) 

Yes 
(stem cells) 

BCL CEBPD, PAX-5 
FOXD3, HDAC2, 
IRF, 
POU2F2, POU3F2, 
STAT, P30O, RXRA 

 cg04470754 
(14 904) 

Blood 6.4x10-57

(A: positive) 
BIOSQTL[37] 

 rs2423868 
    (0.71) 

14 929 Yes  
(lung) 

Yes 
(lung, fetal 
lung) 

CTCF, RAD21, RFX5      

14q22 rs7493885 51 317 Yes  
(blood 
stem cells) 

No   cg25597366 
(51 313) 

Blood 
 
Neutrophils 
 
Monocytes 
 
T cells 
 
Cord blood 
 
Blood 

1.2x10-58 
(G: negative) 

7.1x10-15 
(G: negative) 

5.8x10-13 
(G: negative) 

8.3x10-9 
(G: negative) 

4.7x10-28 

(G: negative) 
3.6x10-46 

(G: negative) 

BIOSQTL[37] 
 
BLUEPRINT[36] 
 
BLUEPRINT[36] 
 
BLUEPRINT[36] 
 
ALSPAC[42] 
 
ALSPAC[42] 



 

  28 

r2, linkage disequilibrium measure between a SNP and the lead SNP (in bold) at a locus; kb, kilobase (build 37) 
a Histone marks represent promoters or enhancers. When regulatory elements colocalized with SNPs in tissues biologically relevant to asthma (blood cells 
and/or lung tissue), “Yes” is indicated in the corresponding column (data retrieved from Haploreg v4.1 [22]) 
b P is the P-value for association of SNP with DNA methylation levels at a CpG site (data retrieved from the Phenoscanner database [24]). 
 

 rs8020067 
       (1.0) 

51 318 Yes  
(T cells, 
blood stem 
cells) 

No AHR::ARNT, ARNT, 
HBP1, PAX-4 
 

     

 rs4901062 
    (0.99) 

51 315 Yes 
(lung, fetal 
lung) 

No CTCF, PITX2, 
RAD21 

     

2p22 rs232542 38 328 Yes 
(fetal lung, 
blood 
cells) 

No YY1  cg02486145 
(38 334) 

Blood 
 
Neutrophils 
 
Monocytes 
 
T cells 
 
Cord blood 
 
Blood 

4.7x10-179 
(C: negative) 

1.9x10-11 
(C: negative) 

1.0x10-6 
(C: negative) 

2.9x10-11 
(C: negative) 

5.4x10-33 

(C: negative) 
4.4x10-34 

(C: negative) 

BIOSQTL[37] 
 
BLUEPRINT[36] 
 
BLUEPRINT[36] 
 
BLUEPRINT[36] 
 
ALSPAC[42] 
 
ALSPAC[42] 

 rs232540 
   (0.99) 

38 329 Yes 
(stem 
cells) 

Yes  
(blood cells) 

CTCF, ELTS, EVI-1, 
MYF, PEBP, RAD21, 
SMC3, TAL1 
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Figure 1. 
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Figure 2. 
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Figure 3. 

 

 

 

 

 


