72 research outputs found

    Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Get PDF
    BACKGROUND: Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. METHODS: Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. RESULTS: When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. CONCLUSION: Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases

    Effect of acute ankle experimental pain on lower limb motor control assessed by the modified star excursion balance test

    Get PDF
    IntroductionFollowing most musculoskeletal injuries, motor control is often altered. Acute pain has been identified as a potential contributing factor. However, there is little evidence of this interaction for acute pain following ankle sprains. As pain is generally present following this type of injury, it would be important to study the impact of acute pain on ankle motor control. To do so, a valid and reliable motor control test frequently used in clinical settings should be used. Therefore, the objective of this study was therefore to assess the effect of acute ankle pain on the modified Star Excursion Balance Test reach distance.MethodsUsing a cross-sectional design, 48 healthy participants completed the modified Star Excursion Balance Test twice (mSEBT1 and mSEBT2). Following the first assessment, they were randomly assigned to one of three experimental groups: Control (no stimulation), Painless (non-nociceptive stimulation) and Painful (nociceptive stimulation). Electrodes were placed on the right lateral malleolus to deliver an electrical stimulation during the second assessment for the Painful and Painless groups. A generalized estimating equations model was used to compare the reach distance between the groups/conditions and assessments.ResultsPost-hoc test results: anterior (7.06 ± 1.54%; p < 0.0001) and posteromedial (6.53 ± 1.66%; p < 0.001) directions showed a significant reach distance reduction when compared to baseline values only for the Painful group. Regarding the anterior direction, this reduction was larger than the minimal detectable change (5.87%).ConclusionThe presence of acute pain during the modified Star Excursion Balance Test can affect performance and thus might interfere with the participant's lower limb motor control. As none of the participants had actual musculoskeletal injury, this suggests that pain and not only musculoskeletal impairments could contribute to the acute alteration in motor control

    Fatigue, Induced via Repetitive Upper-Limb Motor Tasks, Influences Trunk and Shoulder Kinematics During an Upper Limb Reaching Task in a Virtual Reality Environment

    Get PDF
    Background Efficient shoulder movement depends on the ability of central nervous system to integrate sensory information and to create an appropriate motor command. Various daily encountered factors can potentially compromise the execution of the command, such as fatigue. This study explored how fatigue influences shoulder movements during upper limb reaching. Methods Forty healthy participants were randomly assigned to one of two groups: Control or Fatigue Group. All participants completed an upper limb reaching task at baseline and post-experimental, during which they reached four targets located at 90° of shoulder abduction, 90° external rotation at 90° abduction, 120° scaption, and 120° flexion in a virtual reality environment. Following the baseline phase, the Fatigue Group completed a shoulder fatigue protocol, while Controls took a 10-minute break. Thereafter, the reaching task was repeated. Upper limb kinematic (joint angles and excursions) and spatiotemporal (speed and accuracy) data were collected during the reaching task. Electromyographic activity of the anterior and middle deltoids were also collected to characterize fatigue. Two-way repeated-measures ANOVA were performed to determine the effects of Time, Group and of the interaction between these factors. Results The Fatigue group showed decreased mean median power frequency and increased electromyographic amplitudes of the anterior deltoid (p \u3c 0.05) following the fatigue protocol. Less glenohumeral elevation, increased trunk flexion and rotation and sternoclavicular elevation were also observed in the Fatigue group (Group x Time interaction, p \u3c 0.05). The Control group improved their movement speed and accuracy in post-experimental phase, while the Fatigue group showed a decrease of movement speed and no accuracy improvement (Group x Time interaction, p \u3c 0.05). Conclusion In a fatigued state, changes in movement strategy were observed during the reaching task, including increased trunk and sternoclavicular movements and less glenohumeral movement. Performance was altered as shown by the lack of accuracy improvement over time and a decrease in movement speed in the Fatigue group

    Running gait modifications can lead to immediate reductions in patellofemoral pain

    Get PDF
    Gait modifications are commonly advocated to decrease knee forces and pain in runners with patellofemoral pain (PFP). However, it remains unknown if clinicians can expect immediate effects on symptoms. Our objectives were (1) to compare the immediate effects of gait modifications on pain and kinetics of runners with PFP; (2) to compare kinetic changes in responders and non-responders; and (3) to compare the effects between rearfoot strikers (RFS) and non-RFS. Sixty-eight runners with PFP (42 women, 26 men) ran normally on a treadmill before testing six modifications: 1- increase step rate by 10%; 2- 180 steps per minute; 3- decrease step rate by 10%; 4- forefoot striking; 5- heel striking; 6- running softer. Overall, there were more responders (pain decreased ≄1/10 compared with normal gait) during forefoot striking and increasing step rate by 10% (both 35%). Responders showed greater reductions in peak patellofemoral joint force than non-responders during all conditions except heel striking. When compared with non-RFS, RFS reduced peak patellofemoral joint force in a significant manner (P < 0.001) during forefoot striking (partial η2 = 0.452) and running softer (partial η2 = 0.302). Increasing step rate by 10% reduced peak patellofemoral joint force in both RFS and non-RFS. Forty-two percent of symptomatic runners reported immediate reductions in pain during ≄1 modification, and 28% had reduced pain during ≄3 modifications. Gait modifications leading to decreased patellofemoral joint forces may be associated with immediate pain reductions in runners with PFP. Other mechanisms may be involved, given that some runners reported decreased symptoms regardless of kinetic changes

    The Impact of Experimental Pain on Shoulder Movement During an Arm Elevated Reaching Task in a Virtual Reality Environment

    Get PDF
    Background: People with chronic shoulder pain have been shown to present with motor adaptations during arm movements. These adaptations may create abnormal physical stress on shoulder tendons and muscles. However, how and why these adaptations develop from the acute stage of pain is still not well-understood. Objective: To investigate motor adaptations following acute experimental shoulder pain during upper limb reaching. Methods: Forty participants were assigned to the Control or Pain group. They completed a task consisting of reaching targets in a virtual reality environment at three time points: (1) baseline (both groups pain-free), (2) experimental phase (Pain group experiencing acute shoulder pain induced by injecting hypertonic saline into subacromial space), and (3) Post experimental phase (both groups pain-free). Electromyographic (EMG) activity, kinematics, and performance data were collected. Results: The Pain group showed altered movement planning and execution as shown by a significant increased delay to reach muscles EMG peak and a loss of accuracy, compared to controls that have decreased their mean delay to reach muscles peak and improved their movement speed through the phases. The Pain group also showed protective kinematic adaptations using less shoulder elevation and elbow flexion, which persisted when they no longer felt the experimental pain. Conclusion: Acute experimental pain altered movement planning and execution, which affected task performance. Kinematic data also suggest that such adaptations may persist over time, which could explain those observed in chronic pain populations

    Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept

    Get PDF
    BACKGROUND: Virtual reality (VR) provides interactive multimodal sensory stimuli and biofeedback, and can be a powerful tool for physical and cognitive rehabilitation. However, existing systems have generally not implemented realistic full-body avatars and/or a scaling of visual movement feedback. We developed a "virtual mirror" that displays a realistic full-body avatar that responds to full-body movements in all movement planes in real-time, and that allows for the scaling of visual feedback on movements in real-time. The primary objective of this proof-of-concept study was to assess the ability of healthy subjects to detect scaled feedback on trunk flexion movements. METHODS: The "virtual mirror" was developed by integrating motion capture, virtual reality and projection systems. A protocol was developed to provide both augmented and reduced feedback on trunk flexion movements while sitting and standing. The task required reliance on both visual and proprioceptive feedback. The ability to detect scaled feedback was assessed in healthy subjects (n = 10) using a two-alternative forced choice paradigm. Additionally, immersion in the VR environment and task adherence (flexion angles, velocity, and fluency) were assessed. RESULTS: The ability to detect scaled feedback could be modelled using a sigmoid curve with a high goodness of fit (R2 range 89-98%). The point of subjective equivalence was not significantly different from 0 (i.e. not shifted), indicating an unbiased perception. The just noticeable difference was 0.035 +/- 0.007, indicating that subjects were able to discriminate different scaling levels consistently. VR immersion was reported to be good, despite some perceived delays between movements and VR projections. Movement kinematic analysis confirmed task adherence. CONCLUSIONS: The new "virtual mirror" extends existing VR systems for motor and pain rehabilitation by enabling the use of realistic full-body avatars and scaled feedback. Proof-of-concept was demonstrated for the assessment of body perception during active movement in healthy controls. The next step will be to apply this system to assessment of body perception disturbances in patients with chronic pain

    Using Corticomuscular and Intermuscular Coherence to Assess Cortical Contribution to Ankle Plantar Flexor Activity During Gait

    Get PDF
    The present study used coherence and directionality analyses to explore whether the motor cortex contributes to plantar flexor muscle activity during the stance phase and push-off phase during gait. Subjects walked on a treadmill, while EEG over the leg motorcortex area and EMG from the medial gastrocnemius and soleus muscles was recorded. Corticomuscular and intermuscular coherence were calculated from pair-wise recordings. Significant EEG-EMG and EMG-EMG coherence in the beta and gamma frequency bands was found throughout the stance phase with the largest coherence towards push-off. Analysis of directionality revealed that EEG activity preceded EMG activity throughout the stance phase until the time of push-off. These findings suggest that the motor cortex contributes to ankle plantar flexor muscle activity and forward propulsion during gait

    Risk factors for virological failure and subtherapeutic antiretroviral drug concentrations in HIV-positive adults treated in rural northwestern Uganda

    Get PDF
    ABSTRACT: BACKGROUND: Little is known about immunovirological treatment outcomes and adherence in HIV/AIDS patients on antiretroviral therapy (ART) treated using a simplified management approach in rural areas of developing countries, or about the main factors influencing those outcomes in clinical practice. METHODS: Cross-sectional immunovirological, pharmacological, and adherence outcomes were evaluated in all patients alive and on fixed-dose ART combinations for 24 months, and in a random sample of those treated for 12 months. Risk factors for virological failure (>1,000 copies/mL) and subtherapeutic antiretroviral (ARV) concentrations were investigated with multiple logistic regression. RESULTS: At 12 and 24 months of ART, 72% (n=701) and 70% (n=369) of patients, respectively, were alive and in care. About 8% and 38% of patients, respectively, were diagnosed with immunological failure; and 75% and 72% of patients, respectively, had undetectable HIV RNA (<400 copies/mL). Risk factors for virological failure (>1,000 copies/mL) were poor adherence, tuberculosis diagnosed after ART initiation, subtherapeutic NNRTI concentrations, general clinical symptoms, and lower weight than at baseline. About 14% of patients had low ARV plasma concentrations. Digestive symptoms and poor adherence to ART were risk factors for low ARV plasma concentrations. CONCLUSIONS: Efforts to improve both access to care and patient management to achieve better immunological and virological outcomes on ART are necessary to maximize the duration of first-line therapy

    Quantum Physics Exploring Gravity in the Outer Solar System: The Sagas Project

    Get PDF
    We summarise the scientific and technological aspects of the SAGAS (Search for Anomalous Gravitation using Atomic Sensors) project, submitted to ESA in June 2007 in response to the Cosmic Vision 2015-2025 call for proposals. The proposed mission aims at flying highly sensitive atomic sensors (optical clock, cold atom accelerometer, optical link) on a Solar System escape trajectory in the 2020 to 2030 time-frame. SAGAS has numerous science objectives in fundamental physics and Solar System science, for example numerous tests of general relativity and the exploration of the Kuiper belt. The combination of highly sensitive atomic sensors and of the laser link well adapted for large distances will allow measurements with unprecedented accuracy and on scales never reached before. We present the proposed mission in some detail, with particular emphasis on the science goals and associated measurements.Comment: 39 pages. Submitted in abridged version to Experimental Astronom

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015
    • 

    corecore