50 research outputs found

    Cardiac Alpha-Myosin (MYH6) Is the Predominant Sarcomeric Disease Gene for Familial Atrial Septal Defects

    Get PDF
    Secundum-type atrial septal defects (ASDII) account for approximately 10% of all congenital heart defects (CHD) and are associated with a familial risk. Mutations in transcription factors represent a genetic source for ASDII. Yet, little is known about the role of mutations in sarcomeric genes in ASDII etiology. To assess the role of sarcomeric genes in patients with inherited ASDII, we analyzed 13 sarcomeric genes (MYH7, MYBPC3, TNNT2, TCAP, TNNI3, MYH6, TPM1, MYL2, CSRP3, ACTC1, MYL3, TNNC1, and TTN kinase region) in 31 patients with familial ASDII using array-based resequencing. Genotyping of family relatives and control subjects as well as structural and homology analyses were used to evaluate the pathogenic impact of novel non-synonymous gene variants. Three novel missense mutations were found in the MYH6 gene encoding alpha-myosin heavy chain (R17H, C539R, and K543R). These mutations co-segregated with CHD in the families and were absent in 370 control alleles. Interestingly, all three MYH6 mutations are located in a highly conserved region of the alpha-myosin motor domain, which is involved in myosin-actin interaction. In addition, the cardiomyopathy related MYH6-A1004S and the MYBPC3-A833T mutations were also found in one and two unrelated subjects with ASDII, respectively. No mutations were found in the 11 other sarcomeric genes analyzed. The study indicates that sarcomeric gene mutations may represent a so far underestimated genetic source for familial recurrence of ASDII. In particular, perturbations in the MYH6 head domain seem to play a major role in the genetic origin of familial ASDII

    Functional analysis of germline <em>VANGL2</em> variants using rescue assays of <em>vangl2</em> knockout zebrafish

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press. Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful

    Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries.

    Get PDF
    RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10 CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 nea

    Common genetic variants contribute to risk of transposition of the great arteries

    Get PDF
    Rationale: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. Objective: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. Methods and Results: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. Conclusions: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus

    Expression and mutation analysis of BRUNOL3, a candidate gene for heart and thymus developmental defects associated with partial monosomy 10p.

    No full text
    Partial monosomy 10p is a rare chromosomal aberration. Patients often show symptoms of the DiGeorge/velocardiofacial syndrome spectrum. The phenotype is the result of haploinsufficiency of at least two regions on 10p, the HDR1 region associated with hypoparathyroidism, sensorineural deafness, and renal defects (HDR syndrome) and the more proximal region DGCR2 responsible for heart defects and thymus hypoplasia/aplasia. While GATA3 was identified as the disease causing gene for HDR syndrome, no genes have been identified thus far for the symptoms associated with DGCR2 haploinsufficiency. We constructed a. deletion map of partial monosomy 10p patients and narrowed the critical region DGCR2 to about 300 kb. The genomic draft sequence of this region contains only one known gene, BRUNOL3 (NAPOR, CUGBP2, ETR3). In situ hybridization of human embryos and fetuses revealed as well as in other tissues a strong expression of BRUNOL3 in thymus during different developmental stages. BRUNOL3 appears to be an important factor for thymus development and is therefore a candidate gene for the thymus hypoplasia/aplasia seen in partial monosomy 10p patients. We did not find BRUNOL3 mutations in 92 DiGeorge syndrome-like patients without chromosomal deletions and in 8 parents with congenital heart defect children

    Prenatal diagnosis of recurrent hypoplastic left heart syndrome associated with MYH6 variants: a case report

    No full text
    International audienceBackground Hypoplastic left heart syndrome (HLHS) is a rare but genetically complex and clinically and anatomically severe form of congenital heart disease (CHD). Case presentation Here, we report on the use of rapid prenatal whole-exome sequencing for the prenatal diagnosis of a severe case of neonatal recurrent HLHS caused by heterozygous compound variants in the MYH6 gene inherited from the (healthy) parents. MYH6 is known to be highly polymorphic; a large number of rare and common variants have variable effects on protein levels. We postulated that two hypomorphic variants led to severe CHD when associated in trans; this was consistent with the autosomal recessive pattern of inheritance. In the literature, dominant transmission of MYH6-related CHD is more frequent and is probably linked to synergistic heterozygosity or the specific combination of a single, pathogenic variant with common MYH6 variants. Conclusions The present report illustrates the major contribution of whole-exome sequencing (WES) in the characterization of an unusually recurrent fetal disorder and considered the role of WES in the prenatal diagnosis of disorders that do not usually have a genetic etiology

    Truncating mutations on myofibrillar myopathies causing genes as prevalent molecular explanations on patients with dilated cardiomyopathy

    No full text
    International audienceDilated cardiomyopathy (DCM) is one of the leading causes of heart failure with high morbidity and mortality. More than 40 genes have been reported to cause DCM. To provide new insights into the pathophysiology of dilated cardiomyopathy, a next-generation sequencing (NGS) workflow based on a panel of 48 cardiomyopathies-causing genes was used to analyze a cohort of 222 DCM patients. Truncating variants were detected on 63 unrelated DCM cases (28.4%). Most of them were identified, as expected, on TTN (29 DCM probands), but truncating variants were also identified on myofibrillar myopathies causing genes in 17 DCM patients (7.7% of the DCM cohort): 10 variations on FLNC and 7 variations on BAG3. This study confirms that truncating variants on myofibrillar myopathies causing genes are frequently associated with dilated cardiomyopathies and also suggest that FLNC mutations could be considered as a common cause of dilated cardiomyopathy. Molecular approaches that would allow to detect systematically truncating variants in FLNC and BAG3 into genetic testing should significantly increase test sensitivity, thereby allowing earlier diagnosis and therapeutic intervention for many patients with dilated cardiomyopathy

    Circumstances of death and gross and microscopic observations in a series of 200 cases of sudden death associated with arrhythmogenic right ventricular cardiomyopathy and/or dysplasia

    No full text
    International audienceBackground - Sudden death is a possible consequence of arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). Prevalence of ARVC/D in unexpected sudden cardiac death (USCD), however, remains imprecise, as do circumstances of death and ARVC/D-associated gross and microscopic findings, especially His bundle anomalies. Methods and Results - We reviewed 14 000 forensic autopsies required by judicial authorities from January 1980 to January 1999 in a 2 000 000-resident area. Age, gender, and circumstances of death were recorded. Hearts were examined macroscopically and microscopically. In this series, the ARVC/D group accounted for 200 consecutive cases (10.4%) of USCD, including 108 males and 92 females ( average age 32.5 and 34.5 years, respectively). Nearly one third of deaths occurred during the fourth decade of life. Circumstances of death were various, but 75.6% occurred during everyday life events ( at home, 63.1%; in the street, 6.6%; or at work, 6.1%); only 7 cases (3.5%) occurred during sports activity. Nineteen cases (9.5%) happened during the perioperative period. Adipose infiltration of the right ventricle was either isolated (20%) or associated with fibrosis (74.5%) and lymphocytes (5.5%). A total of 14.5% of cases had cardiac hypertrophy, assessed by an increase in heart weight and/or left ventricular wall thickness. In most cases, the His bundle and its branches were abnormal either because of infiltration of adipose tissue (8.1%), fibrosis (54.3%), or both (5.6%). Conclusions - In ARVC/D, both sexes are equally affected, and there is a peak of risk during the fourth decade. Death most frequently occurs during sedentary activity. His abnormalities and left ventricular hypertrophy may be associated with ARVC/D
    corecore