60 research outputs found

    A Hirota bilinear equation for Painlevé transcendents PIV, PII and PI

    Get PDF
    We present some observations on the tau-function for the fourth PainlevÂŽe equation. By considering a Hirota bilinear equation of order four for this tau-function, we describe the general form of the Taylor expansion around an arbitrary movable zero. The corresponding Taylor series for the tau-functions of the first and second PainlevÂŽe equations, as well as that for the Weierstrass sigma function, arise naturally as special cases, by setting certain parameters to zero

    Quasi-linear Stokes phenomenon for the Painlev\'e first equation

    Full text link
    Using the Riemann-Hilbert approach, the Κ\Psi-function corresponding to the solution of the first Painleve equation, yxx=6y2+xy_{xx}=6y^2+x, with the asymptotic behavior y∌±−x/6y\sim\pm\sqrt{-x/6} as ∣x∣→∞|x|\to\infty is constructed. The exponentially small jump in the dominant solution and the coefficient asymptotics in the power-like expansion to the latter are found.Comment: version accepted for publicatio

    Quasi-linear Stokes phenomenon for the second Painlev\'e transcendent

    Full text link
    Using the Riemann-Hilbert approach, we study the quasi-linear Stokes phenomenon for the second Painlev\'e equation yxx=2y3+xy−αy_{xx}=2y^3+xy-\alpha. The precise description of the exponentially small jump in the dominant solution approaching α/x\alpha/x as ∣x∣→∞|x|\to\infty is given. For the asymptotic power expansion of the dominant solution, the coefficient asymptotics is found.Comment: 19 pages, LaTe

    On quantum mean-field models and their quantum annealing

    Full text link
    This paper deals with fully-connected mean-field models of quantum spins with p-body ferromagnetic interactions and a transverse field. For p=2 this corresponds to the quantum Curie-Weiss model (a special case of the Lipkin-Meshkov-Glick model) which exhibits a second-order phase transition, while for p>2 the transition is first order. We provide a refined analytical description both of the static and of the dynamic properties of these models. In particular we obtain analytically the exponential rate of decay of the gap at the first-order transition. We also study the slow annealing from the pure transverse field to the pure ferromagnet (and vice versa) and discuss the effect of the first-order transition and of the spinodal limit of metastability on the residual excitation energy, both for finite and exponentially divergent annealing times. In the quantum computation perspective this quantity would assess the efficiency of the quantum adiabatic procedure as an approximation algorithm.Comment: 44 pages, 23 figure

    Hard loss of stability in Painlev\'e-2 equation

    Full text link
    A special asymptotic solution of the Painlev\'e-2 equation with small parameter is studied. This solution has a critical point t∗t_* corresponding to a bifurcation phenomenon. When t<t∗t<t_* the constructed solution varies slowly and when t>t∗t>t_* the solution oscillates very fast. We investigate the transitional layer in detail and obtain a smooth asymptotic solution, using a sequence of scaling and matching procedures

    The double scaling limit method in the Toda hierarchy

    Get PDF
    Critical points of semiclassical expansions of solutions to the dispersionful Toda hierarchy are considered and a double scaling limit method of regularization is formulated. The analogues of the critical points characterized by the strong conditions in the Hermitian matrix model are analyzed and the property of doubling of equations is proved. A wide family of sets of critical points is introduced and the corresponding double scaling limit expansions are discussed.Comment: 20 page

    A Lagrangian Description of the Higher-Order Painlev\'e Equations

    Full text link
    We derive the Lagrangians of the higher-order Painlev\'e equations using Jacobi's last multiplier technique. Some of these higher-order differential equations display certain remarkable properties like passing the Painlev\'e test and satisfy the conditions stated by Jur\'asˇ\check{s}, (Acta Appl. Math. 66 (2001) 25--39), thus allowing for a Lagrangian description.Comment: 16 pages, to be published in Applied Mathematics and Computatio

    On universality of critical behavior in the focusing nonlinear Schr\uf6dinger equation, elliptic umbilic catastrophe and the Tritronqu\ue9e solution to the Painlev\ue9-I equation

    Get PDF
    We argue that the critical behavior near the point of "gradient catastrophe" of the solution to the Cauchy problem for the focusing nonlinear Schrodinger equation i epsilon Psi(t) + epsilon(2)/2 Psi(xx) + vertical bar Psi vertical bar(2)Psi = 0, epsilon << 1, with analytic initial data of the form Psi( x, 0; epsilon) = A(x)e(i/epsilon) (S(x)) is approximately described by a particular solution to the Painleve-I equation

    Topological expansion in the complex cubic log-gas model. One-cut case

    Get PDF
    We prove the topological expansion for the cubic log-gas partition function, with a complex parameter and defined on an unbounded contour on the complex plane. The complex cubic log-gas model exhibits two phase regions on the complex t-plane, with one cut and two cuts, separated by analytic critical arcs of the two types of phase transition: split of a cut and birth of a cut. The common point of the critical arcs is a tricritical point of the Painleve I type. In the present paper we prove the topological expansion for the partition function in the one-cut phase region. The proof is based on the Riemann-Hilbert approach to semiclassical asymptotic expansions for the associated orthogonal polynomials and the theory of S-curves and quadratic differentials
    • 

    corecore