Abstract

Using the Riemann-Hilbert approach, we study the quasi-linear Stokes phenomenon for the second Painlev\'e equation yxx=2y3+xyαy_{xx}=2y^3+xy-\alpha. The precise description of the exponentially small jump in the dominant solution approaching α/x\alpha/x as x|x|\to\infty is given. For the asymptotic power expansion of the dominant solution, the coefficient asymptotics is found.Comment: 19 pages, LaTe

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019