57 research outputs found

    Genome-wide identification of microsatellites in white clover (Trifolium repens L.) using FIASCO and phpSSRMiner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allotetraploid white clover (<it>Trifolium repens </it>L.) is an important forage legume widely cultivated in most temperate regions. Only a small number of microsatellite markers are publicly available and can be utilized in white clover breeding programs. The objectives of this study were to develop an integrated approach for microsatellite development and to evaluate the approach for the development of new SSR markers for white clover.</p> <p>Results</p> <p>Genomic libraries containing simple sequence repeat (SSR) sequences were constructed using a modified Fast Isolation by AFLP of Sequences COntaining repeats (FIASCO) procedure and phpSSRMiner was used to develop the microsatellite markers. SSR motifs were isolated using two biotin-labeled probes, (CA)<sub>17 </sub>and (ATG)<sub>12</sub>. The sequences of 6,816 clones were assembled into 1,698 contigs, 32% of which represented novel sequences based on BLASTN searches. Approximately 32%, 28%, and 16% of these SSRs contained hexa-, tri-, and di-nucleotide repeats, respectively. The most frequent motifs were the CA and ATG complementary repeats and the associated compound sequences. Primer pairs were designed for 859 SSR loci based on sequences from these genomic libraries and from GenBank white clover nucleotide sequences. A total of 191 SSR primers developed from the two libraries were tested for polymorphism in individual clones from the parental genotypes GA43 ('Durana'), 'SRVR' and six F<sub>1 </sub>progeny from a mapping population. Ninety two percent produced amplicons and 66% of these were polymorphic.</p> <p>Conclusion</p> <p>The combined approach of identifying SSR-enriched fragments by FIASCO coupled with the primer design and <it>in silico </it>amplification using phpSSRMiner represents an efficient and low cost pipeline for the large-scale development of microsatellite markers in plants.</p> <p>The approach described here could be readily adapted and utilized in other non-related species with none or limited genomic resources.</p

    Reward devaluation disrupts latent inhibition in fear conditioning

    Get PDF
    Three experiments explored the link between reward shifts and latent inhibition (LI). Using consummatory procedures, rewards were either downshifted from 32% to 4% sucrose (Experiments 1–2), or upshifted from 4% to 32% sucrose (Experiment 3). In both cases, appropriate unshifted controls were also included. LI was implemented in terms of fear conditioning involving a single tone-shock pairing after extensive tone-only preexposure. Nonpreexposed controls were also included. Experiment 1 demonstrated a typical LI effect (i.e., disruption of fear conditioning after preexposure to the tone) in animals previously exposed only to 4% sucrose. However, the LI effect was eliminated by preexposure to a 32%-to-4% sucrose devaluation. Experiment 2 replicated this effect when the LI protocol was administered immediately after the reward devaluation event. However, LI was restored when preexposure was administered after a 60- min retention interval. Finally, Experiment 3 showed that a reward upshift did not affect LI. These results point to a significant role of negative emotion related to reward devaluation in the enhancement of stimulus processing despite extensive nonreinforced preexposure experience

    The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses

    Get PDF
    Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues

    Peripheral Blood Signatures of Lead Exposure

    Get PDF
    BACKGROUND: Current evidence indicates that even low-level lead (Pb) exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. METHODOLOGY/PRINCIPAL FINDING: Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. CONCLUSIONS/SIGNIFICANCE: The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway
    corecore