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Abstract 

 Three experiments explored the link between reward shifts and Latent Inhibition 

(LI). Using consummatory procedures, rewards were either downshifted from 32% to 

4% sucrose (Experiments 1-2), or upshifted from 4% to 32% sucrose (Experiment 3). In 

both cases, appropriate unshifted controls were also included. LI was implemented in 

terms of fear conditioning involving a single tone-shock pairing after extensive tone-

only preexposure. Nonpreexposed controls were also included. Experiment 1 

demonstrated a typical LI effect (i.e., disruption of fear conditioning after preexposure 

to the tone) in animals previously exposed only to 4% sucrose. However, the LI effect 

was eliminated by preexposure to a 32-to-4% sucrose devaluation. Experiment 2 

replicated this effect when the LI protocol was administered immediately after the 

reward devaluation event. However, LI was restored when preexposure was 

administered after a 60-min retention interval. Finally, Experiment 3 showed that a 

reward upshift did not affect LI. These results point to a significant role of negative 

emotion related to reward devaluation in the enhancement of stimulus processing 

despite extensive nonreinforced preexposure experience. 

 

Key words: Latent inhibition, reward devaluation, consummatory successive negative 

contrast, fear conditioning



Reward shifts and latent inhibition 4 

  Although latent inhibition (LI) was first described in the late 1950s (Lubow & 

Moore, 1959), it still continues to command interest. Despite its apparent simplicity and 

generality across situations, there is no universally accepted explanation for its 

occurrence. The procedure used to induce LI in the animal laboratory is relatively 

simple: A stimulus is presented repeatedly by itself before being paired as a conditioned 

stimulus (CS) with the unconditioned stimulus (US). The result of CS-only 

presentations is to retard acquisition rate during conditioning, compared to the 

acquisition rate of a CS that has not been previously exposed by itself (Lubow, 1989). 

Despite its apparent simplicity, LI engages associative, attentional, memory, 

motivational, and emotional processes that make such a phenomenon appealing for an 

integrative study of the mechanisms participating in stimulus processing (e.g., De la 

Casa & Pineño, 2010). Traditionally, most studies on LI have centered on mechanisms 

related to attention and memory (Lubow & Weiner, 2010), although there have also 

been a limited number of studies analyzing the role of emotional factors on LI (e.g., 

Braunstein-Bercovitz, Dimentman-Ashkenazi & Lubow, 2001; Hellman, Crider, & 

Solomon, 1983; Lazar, Kaplan, Sternberg, & Lubow, 2012).  

In the present experiments, we explored the influence of emotional factors on LI 

by analyzing the effects of reward downshifts and upshifts on the processing of a 

stimulus repeatedly presented without specific consequences. As far as we know, there 

is only one attempt to analyze within a single experiment the effects of inducing 

positive and negative affect on LI (Lazar et al., 2012). In three experiments with human 

participants, LI was reduced when the participants had been exposed to a negative affect 

video clip, while LI remained intact when the participants viewed a positive affect video 

clip before the LI task. These outcomes were interpreted as resulting from an interaction 

between affect and attention, such that the induction of positive affect would broaden 
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the attentional field (e.g., Fredrickson, & Branigan, 2005), facilitating the decline in 

associability of the to-be-CS during preexposure, but the induction of negative affect 

would constrict attention (e.g., Derryberry, & Tucker, 1994), reducing the effect of 

preexposure to the to-be-CS.  

As for evidence from experiments with non-human animals, analysis of the role 

of emotional factors on LI has been mainly centered on the effects of emotional stress 

(e.g., Hellman et al., 1983; Smith, Fieser, Jones, & Schachtman, 2008). These studies 

assumed that stress increases dopamine activity in the nucleus accumbens (e.g., Di 

Chiara, Loddo, & Tanda, 1999; Pascucci, Ventura, Latagliata, Cabib, & Puglisi-Allegra, 

2007), and since there is evidence that dopamine hyperactivity in the nucleus 

accumbens disrupts LI (e.g., Joseph, Peters, Moran, Grigorian, Young, & Gray, 2000), 

induced stress should result in LI impairment. However, the results of inducing stress 

before implementing the LI procedure are far from consistent. As can be seen in Table 

1, some experiments have resulted in reduced LI (e.g., McDonald, Moran, 

Vythelingum, Joseph, Stephenson, & Gray, 2002; Smith et al., 2008), while others have 

produced intact or even enhanced LI (e.g., Hellman et al., 1983; Mongeau, Marcello, 

Sparre, Andersen, & Pani, 2007). An inspection of the procedures used to induce stress 

suggests that those that produce more severe levels of stress (e.g., forced swimming or 

the combination of tail-pressure and amphetamine administration) tended to reduce LI. 

Conversely, mild levels of stress (e.g., tail pressure or restrained movement) either did 

not affect or enhanced LI.  

In the present experiments, we used consummatory tasks to induce emotional 

changes before testing for LI. Specifically, to induce a negative emotion we used the 

reward devaluation task known as consummatory successive negative contrast (cSNC), 
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and to induce a positive emotion we used the reward upshift task named consummatory 

sucessive positive contrast (cSPC; Flaherty, 1996).  

cSNC involves a downshift in the concentration of a sucrose solution, typically 

from 32% to 4% sucrose. Such a devaluation results in a transient suppression of 

consummatory behavior compared to an unshifted control always exposed to 4% 

sucrose. This effect is accompanied by emotional activation, as suggested by the 

pharmacological and neurobiological profile typical of situations involving negative 

emotions (Ortega, Solano, Torres, & Papini, 2017; Papini, Fuchs, & Torres, 2015; 

Papini, Wood, Daniel, & Norris, 2006; Torres & Papini, 2016). For example, among 

other effects, cSNC is modulated by opioids (Papini, 2009), reduced by benzodiazepine 

anxiolytics (Ortega, Glueck, Daniel, Prado-Rivera, White, & Papini, 2014), it induces 

postsession preference for oral voluntary consumption of anxiolytics such as ethanol 

and chlordiazepoxide (Manzo, Donaire, Sabariego, Papini, & Torres, 2015), it is 

reduced by local inactivation in the centromedial amygdala (Kawasaki, Glueck, 

Annicchiarico, & Papini, 2015), eliminated by excitotoxic lesions of the basolateral 

amygdala (Kawasaki, Annicchiarico, Glueck, Morón, & Papini, in press), and it leads to 

enhanced hypothalamic–pituitary–adrenal axis activation (Mitchell & Flaherty, 1998; 

Pecoraro, de Jong, & Dallman, 2009). Based on this profile, and considering the 

hypothesis that negative emotions constrict the attentional field (e.g., Lazar et al., 2012), 

we anticipated that reward devaluation would enhance the processing of a stimulus 

presented immediately after the downshift event, thus reducing the LI effect.  

cSPC involves an upshift in the concentration of a sucrose solution. Unlike 

reward devaluations, reward upshifts are noted by their inconsistent results. Although 

they have been occasionally reported in the consummatory task (Flaherty, Becker, & 

Checke, 1983), these results have not always been replicated (Annicchiarico, Glueck, 
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Cuenya, Kawasaki, Conrad, & Papini, 2016). For our purposes, however, whether a 

reward upshift induces cSPC or not, it provides an assessment of the extent to which a 

change in reward conditions is sufficient to attenuate the LI effect.  

We conducted three experiments designed to study the influence of reward 

downshift and upshift on the processing of a CS after nonreinforced preexposure, 

assessing the effects in terms of the acquisition of freezing in a fear conditioning 

situation. In Experiment 1, animals exposed to a 32-to-4% sucrose devaluation 

underwent LI training in fear conditioning immediately after the devaluation session. In 

Experiment 2, we predicted that the introduction of a temporal delay between the end of 

the devaluation event and the initiation of preexposure training in the LI paradigm 

would eliminate the effect of reward devaluation on LI. In Experiment 3, animals 

received a 4-to-32% sucrose upshift before the LI treatment and we predicted a 

facilitation in processing of the to-be-CS resulting in an intact or even enhanced LI 

effect. 

Experiment 1 

Groups exposed to either reward devaluation or unshifted controls in Phase 1 

were then given either Preexposure (PE) or a Nonpreexposure (NPE) treatments in a 2 x 

2 factorial design. Immediately after the last session in the cSNC procedure, animals 

were exposed in succession to (1) either CS-only trials (PE condition) or an equivalent 

time in the context (NPE condition), (2) a pairing between the CS and a single 

footshock, and (3) a 180-s presentation of the CS to assess the strength of conditioning. 

Attending to the mixed results obtained when a stress-inducing treatment was 

programmed before testing LI (see Table 1), there are no grounds to make a clear 

prediction on the effect of the reward devaluation treatment on LI. However, and 

considering that reward downshift induces a negative emotional state related to the 
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devaluation of reward size (e.g., Papini & Dudley, 1997; Manzo, Donaire, Sabariego, 

Papini, & Torres, 2015), and a negative emotional state has been related to LI reduction 

(e.g., Hellman et al., 1983; Lazar et al., 2012; Smith et al., 2008), we predicted that 

unshifted PE animals would exhibit less fear conditioning than unshifted NPE animals 

(i.e., the LI effect), but downshifted PE and downshifted NPE would exhibit just as 

much conditioning as unshifted NPE animals (i.e., reward devaluation would eliminate 

the LI effect).  

Method 

Subjects. Thirty two male Wistar rats, bread at the University of Seville, served 

as subjects. The mean weight was 332 g (range: 278-404 g). Animals were individually 

housed and maintained on a 12:12 h light:dark cycle (lights on at 06:00 h). All 

behavioural testing was conducted during the light period of the cycle. Four days before 

the start of the experiment, each rat was handled 5 min daily. The day before the start of 

the experiment, the ad lib weight of each rat was registered and the food was removed. 

The food available during the duration of the experiment was reduced to 5-10 g per day; 

this caused a 15% drop in ad lib weight by the end of the experiment. All the 

procedures described in this article were conducted in accordance with the guidelines 

established by Directive 86/609/CEE of the European Community Council and the 

Spanish R.D. 223/1988. 

Apparatus. Four identical Panlab conditioning boxes (model LE111, 

Panlab/Harvard Apparatus, Spain) were used, each measuring 26 x 25 x 25 cm 

(HxLxW). Each chamber was enclosed in a sound-attenuating cubicle (model LE116. 

Panlab/Harvard Apparatus, Spain). The walls of the experimental chambers were made 

of white acrylic. Solutions were prepared w/v by dissolving 4 g (or 32 g) of sucrose for 

every litter of tap water for 4% (and 32%) solutions. They were presented at room 
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temperature in 150-ml bottles with stainless steel spouts attached to the front of each 

conditioning box (6 cm from the floor). Consumption was calculated on each session by 

weighing the bottles before and after fluid presentation to the nearest 0.05 g using a 

compact scale (Mettler Toledo BPA224-1.5AP, Spain). Session length was measured 

with a manual stopwatch (Amarell Electronic Timer-clock, Germany).  

A loudspeaker located at the top of each chamber produced a 70 dB 2.8-kHz 30-

s tone used as the CS. The floor in each chamber consisted of stainless steel rods, 2 mm 

in diameter, spaced 10 mm apart (center to center). The US was a 1-sec, 0.5-mA 

unscrambled AC 50-Hz foot shock from a constant-current generator (Model LE100-26, 

Panlab/Harvard Apparatus, Spain) delivered to the floor of each chamber that rested on 

a platform that recorded the signal generated by the animal movement through a high 

sensitivity Weight Transducer system. Such signal was automatically converted into 

percent of general activity, defined as the percentage of the total time that movement 

was detected during a CS presentation (PE condition) or in a period of the same length 

(NPE condition), by a commercial software (StartFear system software, Panlab/Harvard 

Apparatus, Spain). Sampling was performed continuously at a frequency of 50Hz. 

Procedure. Sessions 1-10 were preshift sessions in the cSNC task. Half the 

animals received 5 min of access to 4% sucrose and the other half to 32% sucrose. On 

session 11, all animals received 5 min of access to 4% sucrose. Thus, for half the 

animals this involved a 32-to-4% sucrose downshift, whereas for the other half the 

concentration did not change from previous session. Immediately after the 5-min 

downshift trial, the bottles were removed from the conditioning boxes and the LI 

protocol was initiated. Thus, animals stayed in the same conditioning boxes during this 

session.  
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In LI, half of the animals previously receiving either 32% or 4% sucrose were 

preexposed to 25 CS-only presentations (PE condition). The first Tone CS was 

presented after a 300-s period without stimulation. Each CS lasted 30 s. The intertrial 

interval was 30 s on average (range: 20-40 s). The other half of each contrast condition 

were exposed to the context only (NPE condition). These animals remained an 

equivalent period of time in the experimental chambers without any additional 

stimulation. A 30-s period after the last CS-only presentation (PE condition) or the 

equivalent context-only exposure (NPE condition) preceded the only conditioning trial. 

In this trial, the CS was presented for 30 s and its termination coincided with the 

delivery of an electric foot-shock (1 s, 0.5 mA). This conditioning trial was followed by 

a 180-s interval that ended with the single test trial. This final test trial consisted of a 

180-s tone-alone trial similar for all the animals. The total duration of the session was, 

approximately 40 min.  

The dependent variables were the amount of sucrose consumed (ml) during 

cSNC sessions and the percentage general activity recorded during tone presentations 

(or during an equivalent period for the animals in the NPE condition) collapsed across 

five trials. Activity during the CS at testing was considered an index of fear 

conditioning, with lower levels of activity reflecting higher levels of fear. All the results 

presented in this article were analyzed with the IBM SPSS Statistics v. 24 package, with 

an alpha level was set at the 0.05 level, and with LSD pairwise comparisons derived 

from the main analysis. 

Results 

Figure 1, top panel, depicts sucrose consumption as a function of concentration 

(32%, 4%). Consumption increased across preshift sessions 1-10 more for groups that 

had access to 32% sucrose than for groups that received 4% sucrose. A Contrast (32%, 
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4%) x Preexposure (PE, NPE) x Session (1-10) analysis indicated a significant contrast 

by session interaction, F(9, 252) = 4.50, p < 0.001, and significant main effects for 

contrast and sessions, Fs > 10.04, ps < 0.001. Other effects were nonsignificant, Fs < 

1.37. ps > 0.20. Thus, there was no evidence of a bias in terms of assignment to the 

preexposure conditions, as none of the effects involving this factor were significant. The 

results of the single downshift session, session 11, are also presented in Figure 1, top 

panel. Despite the small size of the difference, there was a significant cSNC effect as 

revealed for the reduced sucrose consumption for those animals in the 32-4 as compared 

to those in the 4-4 condition, F(1, 28) = 4.82, p < 0.04. Other effects were 

nonsignificant, Fs < 1.21, ps > 0.28, again pointing to the absence of bias as far as 

assignment of animals to the preexposure conditions. 

Figure 1, middle panel, shows the results of preexposure trials. During 

preexposure to the CS, there was a significant interaction between the preexposure 

condition (PE, NPE) and blocks of trials, F(1, 28) = 5.77, p < 0.03. There was also a 

significant reduction in activity across preexposure blocks, F(4, 112) = 21.90, p < 

0.001. Other factors were not significant, Fs < 2.70, ps > 0.11. The preexposure by 

blocks interaction was due to a relatively high activity level in the 32-4/PE condition 

during the last two blocks of preexposure.  

The main results from the LI test are presented in Figure 1, bottom panel. The 

analysis indicated a significant preexposure by contrast interaction, F(1, 28) = 5.77, p < 

0.03. The main effects were not significant, Fs < 3.74, ps > 0.06. Pairwise LSD 

comparisons derived from the main analysis showed that Group 4-4/PE was 

significantly different from Group 4-4/NPE, F(1, 28) = 6.11, p < 0.03, thus confirming 

that rats preexposed to the unshifted reward condition exhibited the LI effect. 

Importantly, Groups 32-4/PE and 32-4/NPE did not differ from each other, F < 1, thus 
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suggesting that the reward downshift experience eliminated the LI effect in fear 

conditioning. In addition, Group 32-4/PE displayed significantly more activity than 

Group 32/PE, F(1, 28) = 9.39, p < 0.006, whereas Groups 4-32/NPE and 32-4/NPE 

were not different from each other, F < 1. Thus, the reward downshift experience 

counteracted the effects of CS preexposure on fear conditioning. 

An additional analysis was conducted on mean activity during the 180 s that 

preceded CS presentation (Pre-CS period) and followed the single CS-US pairing in the 

final test. Because it is possible that the devaluation treatment could have selectively 

affected activity independently of the CS, thus complicating the interpretation of the 

main results. Group means are presented in Table 2. A Preexposure by Contrast analysis 

of these Pre-CS data revealed a significant interaction, F(1, 28) = 13.03, p < 0.002. 

There was also a main effect of contrast, F(1, 28) = 5.59, p < 0.03, due to a higher level 

of activity in groups given access to 4% sucrose than 32% sucrose. The main effect of 

Preexposure was nonsignificant, F < 1. Finally LSD pairwise comparisons derived from 

the main analysis revealed reduced activity in Group 32-4/PE compared to Groups 32-

4/NPE and 4-4/PE, Fs(1, 28) > 6.39, p < 0.02. In addition, Group 4-4/NPE also 

exhibited reduced activity relative to 4-4/PE, F(1, 28) = 6.63, p < 0.02. These data, and 

particularly the reduced activity observed in Group 32-4/PE compared to Group 32-

4/NPE, compromise the interpretation of CS data during the final test. Apparently, 

reward downshift reduced activity both in the presence and absence of the CS during 

the final test.  

Experiment 2 

  One goal of this experiment was to reproduce the conditions that apparently 

disrupted LI in Experiment 1 to determine whether the result observed in Group 32-
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4/PE reflects a selective reduction of activity to the CS or a general reduction of activity 

during both CS and Pre-CS periods.  

Additionally, this experiment was designed to test a specific prediction derived 

from studies of reward devaluation that suggest the effect tend to decay in time, in the 

order of seconds to minutes after the downshift event. For example, rats trained in 

Pavlovian and instrumental analogues of the double-runway frustration effect (Amsel & 

Roussell, 1952) exhibit response invigoration immediately after a surprising reward 

omission, but the effect dissipates when the opportunity to respond is delayed for 20 to 

80 s (Dudley & Papini, 1995; Papini & White, 1994; Stout, Boughner, & Papini, 2003). 

In the cSNC situation, interpolating an interval of 8 days between sessions 11 and 12 

eliminated the effect (Ortega et al., 2014). However, nothing is known about the effect 

on the cSNC situation of interpolating shorter retention intervals while remaining in the 

same context, as was done in the present experiment. Animals were preexposed to the 

CS and later conditioned and tested for LI within the same session in which they had 

experienced reward downshift. If the elimination of LI after reward devaluation 

described in Experiment 1 was related to frustration, then the effect should be replicated 

when tested immediately after the downshift, but not when preexposure training was 

delayed by 60 min. Additionally, if the effect was the result of a nonselective reduction 

of general activity, then activity should be reduced not only during CS presentation, but 

also during the Pre-CS period in groups replicating the results of the previous 

experiment.  

Method 

Subjects and apparatus. Forty male Wistar rats bred at the University of Seville, 

Spain, were used (mean weight: 449 g, range: 328-584 g). Housing, maintenance, and 

the training equipment were as described in Experiment 1.  
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Procedure. Consummatory training and LI testing were as described for Groups 

32-4/PE and 32-4/NPE, in Experiment 1, except for the following. Once the 5-min 

downshift session (session 11) ended, animals were returned to their home cage and the 

bottles were removed from the conditioning boxes. Half the subjects were immediately 

returned to the conditioning boxes and the LI protocol described in Experiment 1 was 

initiated. The other half remained in their home cage for one hour before being returned 

to the conditioning boxes to receive the LI protocol already described. Animals were 

randomly assigned to four groups (n = 10): 32-4/0/PE, 32-4/60/PE, 32-4/0/NPE, and 32-

4/60/NPE. Thus, all animals received 32% sucrose for 10 sessions followed by 4% 

sucrose on session 11, they were placed in their home cage and returned to the 

conditioning box either immediately or after 60 min (0, 60), and they received either 

preexposure or no preexposure as part of the LI treatment (PE, NPE). Other aspects of 

the procedure were as described in Experiment 1. 

Results 

 Figure 2, top panel shows the results of the cSNC phase of the experiment. All 

animals increased sucrose intake across sessions, F(9, 324) = 65.04, p < 0.001. There 

was also a significant interaction between retention interval and session, F(9, 324) = 

2.67, p < 0.006. This interaction is detecting the crossing over of groups, especially on 

session 9, and it was therefore not given much weight. Other effects were 

nonsignificant, Fs < 1.78, ps > 0.19. Sucrose consumption decreased sharply on session 

11. Although there was a tendency for animals that were to receive NPE treatment to 

decrease their intake more than those that were to receive PE treatment, the difference 

did not reach significance, F(1, 36) = 3.43, p > 0.07. Other effects were nonsignificant, 

Fs < 1. 
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 There was a general reduction of activity during preexposure training in 

Experiment 2 compared to Experiment 1 (compare the middle panels of Figures 1 and 

2). The reason for these differences is unclear since the procedures that were followed 

were identical with one major exception. In Experiment 1, after the downshift trial, 

animals remained undisturbed in the conditioning boxes until the LI treatment was 

initiated. However, in Experiment 2, each rat was removed from the conditioning box 

and introduced again to receive the LI treatment after 0 or 60 min. It is likely that such 

manipulation increased general levels of freezing. In spite of this circumstance, the 

results were clear: During preexposure there was again a preexposure by session effect, 

F(4, 144) = 2.65, p < 0.04, mostly due to Group 0/NPE, which displayed low activity 

levels during the third trial block. There was also a significant reduction in activity 

across sessions, F(4, 144) = 27.95, p < 0.001. All other factors were not significant, Fs 

< 1.70, ps > 0.15.  

Figure 2, bottom panel, shows the main results of this experiment. A 

Preexposure (NPE, PE) by Retention Interval (0, 60 min) analysis showed a significant 

interaction, F(1, 36) = 5.48, p < 0.03, and also a significant main effect of preexposure, 

F(1, 36) = 8.60, p < 0.007. The main effect of the retention interval condition was not 

significant, F < 1. LSD pairwise tests derived from this analysis indicated that activity 

in Group 60/PE was significantly higher than in Group 60/NPE, F(1, 36) = 13.91, p < 

0.002, a result demonstrating the LI effect after a 60-min retention interval. Group 

60/PE was also significantly different from Group 0/PE, F(1, 36) = 5.11, p < 0.04, 

indicating that the reward devaluation event erased the effects of preexposure on fear 

conditioning when there was a minimal retention interval. That there was no evidence 

of a LI effect after the short retention interval is indicated also by a nonsignificant 

difference between Groups 0/NPE and 0/PE, F < 1. 



Reward shifts and latent inhibition 16 

  To determine whether the effect of reward devaluation on LI was related to CS 

processing during preexposure or to a general reduction of activity, a Preexposure by 

Retention Interval analysis was conducted on activity during the Pre-CS period. The 

means are presented in Table 2. The analysis showed that neither the main effects nor 

the interaction was significant, Fs < 1.  

Experiment 3 

 The results of Experiment 2 indicated that the reward devaluation treatment had 

a disruptive effect on LI when it was conducted inmediately before CS preexposure, but 

such effect vanished when a 60-min retention interval was introduced between the 

devaluation episode and the LI treatment. In addition, the absence of differences on 

general activity during the Pre-CS period is consistent with the hypothesis that the 

reduction of LI in animals exposed to reward devaluation was caused by the emotional 

effect induced by the devaluation treatment.  

In this experiment, we reproduced the same design used in Experiment 1, but the 

key group was exposed to a 4-to-32% sucrose upshift. There was also an unshifted 

control always receiving 32% sucrose. Both groups received the LI treatment 

immediately after the last contrast session. Since reward upshift should induce a 

positive emotional state, and such states have been shown to leave LI intact (Lazar et 

al., 2012), we predicted that the LI effect would remain intact or even be enhanced for 

upshifted PE animals. In addition, introducing a reward upshift before the LI treatment 

will allow testing an explanation of the reduced LI found in Experiments 1 and 2 based 

on reward changes. It is possible that any change in reward would cause increase 

attention because of its surprising nature. There is evidence that a surprising event can 

restore the associability of a previously preexposed CS (e.g., Hall & Pearce, 1982). 

Therefore, if the reduced LI effect observed in previous experiments was the 
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consequence of the surprise produced by the reward change, we should find a similar 

reduction of LI in this experiment because the 4-to-32% sucrose change should be just 

as surprising as the 32%-to-4% sucrose change. 

Method 

Subjects and apparatus. Thirty-two male Wistar rats bred at the University of 

Seville, Spain, were used (mean weight: 340 g, range: 291-450 g). Housing, 

maintenance, and the training equipment were as described in Experiment 1.  

Procedure. Sessions 1-10 were preshift sessions in the cSPC task. A random 

half of the animals received 5 min of access to 4% sucrose and the other half to 32% 

sucrose. On session 11, all animals received 5 min of access to 32% sucrose. Thus, for 

half the animals this involved a 4-to-32% sucrose change, whereas for the other half the 

concentration was always 32%. Immediately after this 5-min trial, the bottles were 

removed from the conditioning boxes and the same LI protocol described in Experiment 

1 was initiated.  

Results 

Figure 3, top panel, shows the results of the reward upshift manipulation. The 

top panel depicts sucrose consumption as a function of concentration. Consumption 

increased across preshift sessions 1-10 more for groups that had access to 32% sucrose 

than for groups that received 4% sucrose. A Contrast (32%, 4%) by Preexposure (PE, 

NPE) by Session (1-10) analysis indicated a significant contrast by session interaction, 

F(9, 252) = 3.05, p < 0.003, and significant main effects for Contrast and Sessions, Fs > 

10.23, ps < 0.004. The remaining effects and interactions were nonsignificant, Fs < 

1.01. ps > 0.43. The results of the single upshift session are also presented in Figure 3, 

top panel. The main effect of contrast was significant as revealed by the increase in 

sucrose consumption from session 10 to session 11 for those animals in the 4-32 groups, 
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F(1, 28) = 8.20, p < 0.009, but notice that in this case upshifted groups were 

significantly below unshifted controls—the opposite of a SPC effect. Similar results 

have been reported in analogous experiments involving reward upshifts (Annicchiarico 

et al., 2016). Other effects were nonsignificant, Fs < 1, pointing to the absence of bias 

as far as assignment of animals to the preexposure conditions. 

Preexposure data are presented in Figure 3, middle panel. During preexposure to 

the CS, there was a significant reduction in activity across preexposure sessions, F(4, 

112) = 20.56, p < 0.001. Also, the interactions of preexposure and contrast with blocks 

were both significant, Fs(4, 112) > 3.50, ps < 0.02. Other factors and interactions were 

not significant, Fs < 2.11, ps > 0.08. LSD pairwise comparisons confirmed that the 

blocks by preexposure interaction was due to a relatively low activity in PE groups 

(driven exclusively by Group 32-32/PE) on block 4, F(1, 28) = 4.24, p < 0.05. The 

blocks by contrast interaction was due to higher activity during the first three blocks in 

animals previously exposed to the 4-to-32% sucrose upshift, Fs > 5.48, ps < 0.03.  

 Figure 3, bottom panel, shows mean percentage of activity during the CS 

presentation in the final test. A Preexposure by Contrast analysis revealed that PE 

groups displayed higher CS activity than NPE groups, F(1, 28) = 10.94, p < 0.004, due 

to an overall LI effect. The contrast and interaction effects were not significant, Fs(1, 

28) < 2.32, ps > 0.12. 

 The bottom section of Table 2 shows mean percentage of activity during the Pre-

CS period. A Preexposure (NPE, PE) by Contrast (4-32, 32-32) analysis indicated that 

none of the factors achieved significance, Fs(1, 28) < 2.49, ps > 0.12.   

General Discussion 

These experiments showed that nonreinforced preexposure to the CS 

immediately after a reward devaluation event eliminated the LI effect; groups given 
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unshifted access to the reward exhibited a regular LI effect (Experiment 1). In addition, 

the effects of reward devaluation were transient, as indicated by the emergence of the LI 

effect when a 60-min retention interval was interpolated between reward devaluation 

and the preexposure treatment (Experiment 2). Finally, there was no evidence that the 

LI effect was affected by a reward upshift treatment (Experiment 3), suggesting that the 

effect on LI described in Experiments 1 and 2 was due to reward devaluation, rather 

than just a change in reward conditions.  

The reduced activity observed in Group 32-4/PE in Experiment 1 cannot be 

considered as evidence of an effect of negative affect on LI selective to the CS, since a 

reduction of activity also appeared in the Pre-CS period specifically for this group (see 

Table 1). The source of this general effect is difficult to identify. Perhaps, a combination 

of the negative affect induced by the reward devaluation treatment and the presentation 

of a novel stimulus (the to-be-CS) resulted in a sensitized fear response to the US (e.g., 

Rau & Fanselow, 2009). However, the lack of differences in pre-CS activity between 

Groups 0/NPE and 0/PE in Experiment 2, both receiving similar treatments to those of 

Group 32-4/NPE and 32-4/PE in Experiment 1, do not support a sensitization 

hypothesis.  

Indeed, the results of Experiment 2 offered a clear confirmation of our 

hypothesis that the induction of negative affect by means of reward devaluation would 

disrupt LI. This result is relevant to at least two problems. First, the role of emotional 

factors in LI, a learning phenomenon traditionally explored from a cognitive 

perspective, and second, the links between psychological pain (e.g., induced by reward 

devaluation, as in the cSNC situation) and physical pain (e.g., induced by peripheral 

activation of pain receptors, as in fear conditioning). 
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Regarding the role of emotional factors, as mentioned in the introduction, 

previous research has revealed that both negative affect (Lazar et al., 2012) and intense 

emotional stress can disrupt the LI effect (e.g., Shalev et al., 1998; Smith et al., 2008). 

Such results have been traditionally interpreted in the context of stress-induced 

increases in attention to the preexposed stimulus mediated by enhanced dopamine 

activity in the nucleus accumbens (e.g., McDonald et al., 2002). In Amsel’s (1992) 

frustration theory, surprising reward omissions or devaluations have both associative 

and nonassociative effects. Associative effects involved the acquisition of an 

anticipatory frustration state that promotes avoidance of the goal. More related to the 

present experiments, surprising nonreward also induces an increase in drive that 

presumably underlies response invigoration (Stout, Boughner, & Papini, 2003). Drive 

induction is a concept that can be reframed as attentional enhancement, a conceptual 

shift that might close the circle in an understanding of the effects of reward devaluation 

on LI observed in the present experiments.  

The attentional perspective of LI that attributes a weak CS-US association to a 

reduction in attention to a preexposed CS (Lubow, 1989; Pearce & Hall, 1980) contrasts 

with an alternative view proposing that different associations are established during the 

two stages of a LI experiment: A CS-nothing association acquired during nonreinforced 

presentations of the CS and a CS-US association established during conditioning trials. 

At the time of testing, both associations would compete for behavioral expression 

inducing the reduced conditioned response that characterizes LI, a competition that 

would be attenuated or absent in the nonpreexposed group (Bouton, 1993). Considering 

that memory retrieval is impaired by stress (e.g., Park, Zoladz, Conrad, Fleshner, & 

Diamond, 2008; Rashidy-Pour, Sadeghi, Taherain, Vafaei, & Fathollahi, 2004), the 

reduced LI observed in the present experiments could be interpreted not only as the 
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result of increased attention to the CS during preexposure, but also as the result of an 

impaired CS-nothing association retrieval at the time of testing due to the effects of 

negative emotion induced by reward devaluation when the CS-nothing association was 

being acquired. Therefore, the present results do not distinguish between the attentional 

and the interference theories of LI. A possible alternative explanation to the present 

results relies on the well-established contextual dependence of LI (e.g., Hall & 

Channell, 1986; Lovibond, Preston, & Mackintosh, 1984). More specifically, when 

preexposure and conditioning stages are conducted in different contexts, LI is impaired 

whether the change involves the physical context (Westbrook, Jones, Bailey, & Harris, 

2000) or organism’s internal state (Overton, 1974; Wynne & Delius, 1995), or even 

when the different experimental stages are conducted at different times during the day 

(Molero-Chamizo, 2016; Manrique, Molero, Ballesteros, Morón, Gallo, & Fenton, 

2004). Thus, it is possible that the emotional internal state would differ at the time of 

preexposure relative to the state during conditioning (programmed approximately 25 

min after the cSNC episode), as the emotion induced by reward devaluation decayed 

(see Experiment 2). Therefore, the reduced LI effect observed in Groups 32/PE and 

0/PE in Experiments 1 and 2, respectively, can be interpreted as the result of a change in 

the emotional internal context from preexposure to conditioning. Additional research is 

needed to explore the possible role of change in internal context on LI.  

A brief comment on the failure of reward upshift to influence LI is due. In 

Experiment 3, an equivalent, but opposite, change in reward relative to that 

implemented in Experiment 1 yielded no evidence of an effect on LI. There are at least 

two possible accounts that apply to these results. First, it can be argued that the lack of 

effect on LI was due to inadequate training parameters to induce a cSPC effect during 

Phase 1. In view of the extensive series of experiments showing difficulties to obtain the 
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cSPC effect, this possibility seems unlikely (Annicchiarico et al., 2016). Second, even if 

no evidence of the cSPC effect is obtained, this would not necessarily preclude the 

presence of a positive emotion induced by reward upshift. If this were the case, then one 

would have to conclude that positive emotions do not influence LI in fear conditioning, 

either by generating a different internal context or by reestablishing attention to the CS. 

Clearly, more research is needed to determine whether positive emotions can influence 

LI. 

The present results are also relevant to the interactions between psychological 

and physical pain (Papini, Wood, Daniel, & Norris, 2006; Papini, Fuchs, & Torres, 

2015). The basic assumption is that these two forms of pain share some fundamental 

mechanisms at the neurochemical and neural levels that allow them to interact in 

selective ways. For example, exposure to reward devaluation, which is known to induce 

the release of endogenous opioids (Pellegrini, Wood, Daniel, & Papini, 2005), leads to 

reduced sensitivity to peripheral physical pain (Mustaca & Papini, 2005; Jiménez-

García, Ruiz-Leyva, Cendán, Torres, Papini, & Morón, 2016). Such hypoalgesia could 

interfere with fear conditioning by reducing the subjective intensity of the electric 

shock. However, no evidence of such an effect was observed in the present results. For 

example, for NPE groups, downshifted and unshifted animals exhibited no differences 

in fear conditioning (Figures 1-2, bottom panels). It is possible that by the time animals 

were exposed to the shock, the hypoalgesic response was sufficiently attenuated to 

make little difference. There is evidence of such time decay after a single exposure to 

reward devaluation (Jiménez-García et al., 2016). The connection between reward 

devaluation and fear conditioning also deserves additional study.  

 We started by assuming that several processes underlie the LI effect, including 

the emotional state at the time of preexposure and testing. The general trend in the 
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literature has been to neglect the role of emotion in the LI effect, irrespective of the 

procedure used to preexpose the target stimulus. However, a closer look at the typical 

procedures used to induce LI in the animal literature (e.g., fear conditioning, appetitive 

conditioning, avoidance learning, and conditioned taste aversion) suggests that 

differences in the emotional state of the animal related, for example, to food deprivation 

and to the nature of the CS and US, could potentially affect the way in which stimuli are 

processed (De la Casa, 2013).   
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Table 1 

Review of literature on LI and stress. 

 

Reference Stress procedures LI procedure Effect on LI 

Hellman et al., 1983 Tail-pressure 

Tail-pressure + 

amphetamine 

2-way avoidance Intact LI 

Reduced LI 

Lehmann et al., 2000 Prenatal stress 

Postnatal maternal 

separation  

Fear conditioning  

2-way avoidance 

Intact LI 

Enhanced LI 

McDonald el al., 2002 Chronic intense 

noise exposure 

Fear conditioning Reduced LI 

Melo et al., 2003 Chronic stress  Fear conditioning Enhanced LI 

Mongeau et al., 2007 Chronic restrain Fear conditioning Enhanced LI 

Shalev et al., 1998 Acute and chronic 

administration of 

corticosterone 

Fear conditioning Reduced LI 

Smith et al., 2008 Forced swimming Conditioned taste 

aversion 

Reduced LI 
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Table 2 

Mean Percentage activity during the Pre-CS period. 

Exp 1 32-4/NPE 32-4/PE 4-4/NPE 4-4/PE 

Mean (SEM) 72.40 (8.78) 47.83 (7.72) 63.84 (4.37) 88.86 (5.76) 

Exp 2 32-4/0/NPE 32-4/0/PE 32-4/60/NPE 32-4/60/PE 

Mean (SEM) 17.47 (4.75) 21.28 (5.42) 14.77 (4.24) 20.45 (5.00) 

Exp 3 4-32/NPE 4-32/PE 32-32/NPE 32-32/PE 

Mean (SEM) 60.61 (14.11) 54.76 (34.58) 75.85 (14.29) 65.28 (23.11) 
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Figure Captions 

Figure 1. Top panel: Mean (SEM) sucrose consumption (ml) as a function of sucrose 

concentration (32%, 4%) during preshift sessions (1-10) and the only downshift 

session (11). Bottom panel: Activity during the test session for fear 

conditioning. Groups had been previously exposed (PE) or not (NPE) to a tone 

to be used as the CS in the fear conditioning task. 

Figure 2. Top panel: Mean (SEM) 32% sucrose consumption (ml) during preshift 

sessions (1-10) and 4% sucrose consumption during one downshift session (11). 

Bottom panel: Activity in a test trial after preexposure (PE) or not (NPE), 

followed by a single fear conditioning trial. Groups differed in terms of a 

retention period between reward downshift and preexposure treatment, either 

immediate (0) or delayed by 60 min (60).  

Figure 3. Top panel: Mean (SEM) sucrose consumption (ml) as a function of sucrose 

concentration (32%, 4%) during preshift sessions (1-10) and the only upshift 

session (11). Bottom panel: Activity during the test session for fear 

conditioning. Groups had been previously exposed (PE) or not (NPE) to a tone 

to be used as the CS in the fear conditioning task.  
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Figure 1 
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Figure 2 
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Figure 3  

 


