1,233 research outputs found

    Increase of dissolved inorganic carbon and decrease in pH in near-surface waters in the Mediterranean Sea during the past two decades

    Get PDF
    Two 3-year time series of hourly measurements of the fugacity of CO2 (fCO2) in the upper 10 m of the surface layer of the northwestern Mediterranean Sea have been recorded by CARIOCA sensors almost two decades apart, in 1995–1997 and 2013–2015. By combining them with the alkalinity derived from measured temperature and salinity, we calculate changes in pH and dissolved inorganic carbon (DIC). DIC increased in surface seawater by ∼25 µmol kg−1 and fCO2 by 40 µatm, whereas seawater pH decreased by ∼0.04 (0.0022 yr−1). The DIC increase is about 15 % larger than expected from the equilibrium with atmospheric CO2. This could result from natural variability, e.g. the increase between the two periods in the frequency and intensity of winter convection events. Likewise, it could be the signature of the contribution of the Atlantic Ocean as a source of anthropogenic carbon to the Mediterranean Sea through the Strait of Gibraltar. We then estimate that the part of DIC accumulated over the last 18 years represents ∼30 % of the total inventory of anthropogenic carbon in the Mediterranean Sea

    Direct Observation of Long-Lived Isomers in 212 Bi

    Get PDF
    Long-lived isomers in Bi212 have been studied following U238 projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into a storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of Bi212 was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring half-life >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognized, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer deexcitation studies. � 2013 American Physical Society

    The play's the thing

    Get PDF
    For very understandable reasons phenomenological approaches predominate in the field of sensory urbanism. This paper does not seek to add to that particular discourse. Rather it takes Rorty’s postmodernized Pragmatism as its starting point and develops a position on the role of multi-modal design representation in the design process as a means of admitting many voices and managing multidisciplinary collaboration. This paper will interrogate some of the concepts underpinning the Sensory Urbanism project to help define the scope of interest in multi-modal representations. It will then explore a range of techniques and approaches developed by artists and designers during the past fifty years or so and comment on how they might inform the question of multi-modal representation. In conclusion I will argue that we should develop a heterogeneous tool kit that adopts, adapts and re-invents existing methods because this will better serve our purposes during the exploratory phase(s) of any design project that deals with complexity

    High-resolution measurement of the time-modulated orbital electron capture and of the β+\beta^+ decay of hydrogen-like 142^{142}Pm60+^{60+} ions

    Full text link
    The periodic time modulations, found recently in the two-body orbital electron-capture (EC) decay of both, hydrogen-like 140^{140}Pr58+^{58+} and 142^{142}Pm60+^{60+} ions, with periods near to 7s and amplitudes of about 20%, were re-investigated for the case of 142^{142}Pm60+^{60+} by using a 245 MHz resonator cavity with a much improved sensitivity and time resolution. We observed that the exponential EC decay is modulated with a period T=7.11(11)T = 7.11(11)s, in accordance with a modulation period T=7.12(11)T = 7.12(11) s as obtained from simultaneous observations with a capacitive pick-up, employed also in the previous experiments. The modulation amplitudes amount to aR=0.107(24)a_R = 0.107(24) and aP=0.134(27)a_P = 0.134(27) for the 245 MHz resonator and the capacitive pick-up, respectively. These new results corroborate for both detectors {\it exactly} our previous findings of modulation periods near to 7s, though with {\it distinctly smaller} amplitudes. Also the three-body β+\beta^+ decays have been analyzed. For a supposed modulation period near to 7s we found an amplitude a=0.027(27)a = 0.027(27), compatible with a=0a = 0 and in agreement with the preliminary result a=0.030(30)a = 0.030(30) of our previous experiment. These observations could point at weak interaction as origin of the observed 7s-modulation of the EC decay. Furthermore, the data suggest that interference terms occur in the two-body EC decay, although the neutrinos are not directly observed.Comment: In memoriam of Prof. Paul Kienle, 9 pages, 1 table, 5 figures Phys. Lett. B (2013) onlin

    Acoustics of multiscale sorptive porous materials

    Get PDF
    This paper investigates sound propagation in multiscale rigid-frame porous materials that support mass transfer processes, such as sorption and different types of diffusion, in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic method of homogenization for periodic media is successively used to derive the macroscopic equations describing sound propagation through the material. This allowed us to conclude that the macroscopic mass balance is significantly modified by sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale (pore to/from micro- and nanopore scales) pressure diffusion. This modification is accounted for by the dynamic compressibility of the effective saturating fluid that presents atypical properties that lead to slower speed of sound and higher sound attenuation, particularly at low frequencies. In contrast, it is shown that the physical processes occurring at the micro-nano-scale do not affect the macroscopic fluid flow through the material. The developed theory is exemplified by introducing an analytical model for multiscale sorptive granular materials, which is experimentally validated by comparing its predictions with acoustic measurements on granular activated carbons. Furthermore, we provide empirical evidence supporting an alternative method for measuring sorption and mass diffusion properties of multiscale sorptive materials using sound waves

    Direct observation of long-lived isomers in 212^{212}Bi

    Get PDF
    Long-lived isomers in 212Bi have been studied following 238U projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into the GSI storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of 212Bi was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring halflife >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognised, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer de-excitation studies.Comment: published in PRL 110, 12250
    corecore