175 research outputs found

    Angular momentum evolution in laser-plasma accelerators

    Get PDF
    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration

    Probabilistic and predictive performance-based approach for assessing reinforced concrete structures lifetime: The applet project

    Get PDF
    International audienceConcrete deterioration results in different damage extents, from cracking to concrete spalling, from losses of reinforcement cross-sections to bond losses. A relevant prediction of this performance is the basis for a successful management of the concrete structures. Conversely, the large amount of uncertainties related to parameters and models require a specific analysis in order to provide relevant results. The APPLET project intends to develop a probabilistic and predictive performance-based approach by quantifying the various sources of variability (material and structure), studying the interaction between environmental aggressive agents and the concrete material, ensuring a transfer of the physical-chemical models at the material scale towards models at the structure level, including and understanding in a better manner the corrosion process, integrating interface models between reinforcement and concrete, proposing relevant numerical models, integrating know-how from monitoring or inspection. To provide answers, a consortium of 19 partners has been established and has promoted a research project funded by the French Research Science Agency (ANR). Started in May 2007, the project has ended in November 2010. This paper will resume the most significant advances targeted by this research project

    Self-assembly in solution of a reversible comb-shaped supramolecular polymer

    Get PDF
    We report a single step synthesis of a polyisobutene with a bis-urea moiety in the middle of the chain. In low polarity solvents, this polymer self-assembles by hydrogen bonding to form a combshaped polymer with a central hydrogen bonded backbone and polyisobutene arms. The comb backbone can be reversibly broken, and consequently, its length can be tuned by changing the solvent, the concentration or the temperature. Moreover, we have proved that the bulkiness of the side-chains have a strong influence on both the self-assembly pattern and the length of the backbone. Finally, the density of arms can be reduced, by simply mixing with a low molar mass bis-urea

    Experimental demonstration of singular-optical colouring of regularly scattered white light

    Get PDF
    Experimental interference modelling of the effects of colouring of a beam traversing a light-scattering medium is presented. It is shown that the result of colouring of the beam at the output of the medium depends on the magnitudes of the phase delays of the singly forward scattered partial signals. The colouring mechanism has for the first time experimentally been illustrated for a forward propagating beam through a light-scattering medium. This is showed in video-fragments of the interferograms recorded within the zero interference fringe with a gradual change of the path difference of the interfering polychromatic wave trains. Spectral investigation of the effects of colouring has been carried out using a solution of liquid crystal in a polymer matrix. The amplitude ratio of the non-scattered and the singly forward scattered interfering components significantly affects the colour intensity. It has further been established that the spectral content of the illuminating beam strongly influences the colour of the resulting radiation

    RDR2 Partially Antagonizes the Production of RDR6-Dependent siRNA in Sense Transgene-Mediated PTGS

    Get PDF
    Background: RNA-DEPENDENT RNA POLYMERASE6 (RDR6) and SUPPRESSOR of GENE SILENCING 3 (SGS3) are required for DNA methylation and post-transcriptional gene silencing (PTGS) mediated by 21-nt siRNAs produced by sense transgenes (S-PTGS). In contrast, RDR2, but not RDR6, is required for DNA methylation and TGS mediated by 24-nt siRNAs, and for cellto-cell spreading of IR-PTGS mediated by 21-nt siRNAs produced by inverted repeat transgenes under the control of a phloem-specific promoter. Principal Findings: In this study, we examined the role of RDR2 and RDR6 in S-PTGS. Unlike RDR6, RDR2 is not required for DNA methylation of transgenes subjected to S-PTGS. RDR6 is essential for the production of siRNAs by transgenes subjected to S-PTGS, but RDR2 also contributes to the production of transgene siRNAs when RDR6 is present because rdr2 mutations reduce transgene siRNA accumulation. However, the siRNAs produced via RDR2 likely are counteractive in wildtype plants because impairement of RDR2 increases S-PTGS efficiency at a transgenic locus that triggers limited silencing, and accelerates S-PTGS at a transgenic locus that triggers efficient silencing. Conclusions/Significance: These results suggest that RDR2 and RDR6 compete for RNA substrates produced by transgenes subjected to S-PTGS. RDR2 partially antagonizes RDR6 because RDR2 action likely results in the production of counteractiv

    Innate Immune Function in Placenta and Cord Blood of Hepatitis C – Seropositive Mother-Infant Dyads

    Get PDF
    Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in ∌80% of cases following exposure, the rate of mother-to-child transmission (2–6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and γΎ-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells

    Relationship of weather types on the seasonal and spatial variability of rainfall, runoff, and sediment yield in the western Mediterranean basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations

    Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.Spanish Government (Ministry of Economy and Competitiveness, MINECO) and FEDER Projects: CGL2014 52135-C3-3-R, ESP2017-89463-C3-3-R, CGL2014-59946-R, CGL2015-65569-R, CGL2015-64284-C2-2-R, CGL2015-64284-C2-1-R, CGL2016-78075-P, GL2008-02879/BTE, LEDDRA 243857, RECARE-FP7, CGL2017-83866-C3-1-R, and PCIN-2017-061/AEI. Dhais Peña-Angulo received a “Juan de la Cierva” postdoctoral contract (FJCI-2017-33652 Spanish Ministry of Economy and Competitiveness, MEC). Ana Lucia acknowledge the "Brigitte-Schlieben-Lange-Programm". The “Geoenvironmental Processes and Global Change” (E02_17R) was financed by the AragĂłn Government and the European Social Fund. JosĂ© AndrĂ©s LĂłpez-TarazĂłn acknowledges the Secretariat for Universities and Research of the Department of the Economy and Knowledge of the Autonomous Government of Catalonia for supporting the Consolidated Research Group 2014 SGR 645 (RIUS- Fluvial Dynamics Research Group). Artemi CerdĂ  thank the funding of the OCDE TAD/CRP JA00088807. JosĂ© MartĂ­nez-Fernandez acknowledges the project Unidad de Excelencia CLU-2018-04 co-funded by FEDER and Castilla y LeĂłn Government. Ane Zabaleta is supported by the Hydro-Environmental Processes consolidated research group (IT1029-16, Basque Government). This paper has the benefit of the Lab and Field Data Pool created within the framework of the COST action CONNECTEUR (ES1306)

    Generation of a Novel Regulatory NK Cell Subset from Peripheral Blood CD34+ Progenitors Promoted by Membrane-Bound IL-15

    Get PDF
    BACKGROUND: NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP), of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg). The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC) into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of "NK-ireg" cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34(+) PB-HP. Finally, a small subset of NKp46(+) HLA-G(+) IL-10(+) is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells. CONCLUSIONS/SIGNIFICANCE: In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56(+) CD16(+) NKp30(+) NKp44(+) NKp46(+) CD94(+) CD69(+) CCR7(+)) generated from specific pSTAT6(+) GATA3(+) precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant rejection or graft versus host diseases. In addition, NK-ireg cells can be easily derived from peripheral blood of the patients and could constitute an autologous biotherapic tool to be used combined or in alternative to other immuno-regulatory cells
    • 

    corecore