12 research outputs found

    Environmental adaptation of protein synthesis and proteolysis in chicken muscle : signaling pathways involved

    No full text
    Les mécanismes d’adaptation environnementale du métabolisme protéique à court et long-terme sont mal connus. L’exposition prolongée à la chaleur (32°C vs. 22°C) modifie l'expression de quelques gènes impliqués dans le métabolisme protéino-énergétique du muscle Pectoralis major de poulet. La moindre activation de la protéine ribosomale S6 par des facteurs anaboliques à 32°C pourrait indiquer une baisse de l’efficacité de la traduction des ARNm en protéines au chaud. Ceci, associé à une baisse du potentiel de synthèse, traduit une altération à long-terme de la protéosynthèse musculaire au chaud. La distribution séquentielle de régimes alimentaires variant par leur teneur en protéines et/ou en énergie induit au niveau du muscle Pectoralis major de poulet des régulations considérables d’acteurs impliqués dans le contrôle de la protéolyse (e.g. atrogin-1) et de la protéosynthèse (e.g. mTOR, S6K1, S6). Ceci indique une régulation à court-terme de l’équilibre protéosynthèse/protéolyse, dont les mécanismes et les limites restent à caractériser.Molecular mechanisms underlying the short and long-term environmental adaptation of protein metabolism are not well understood. Prolonged heat exposure (32°C vs. 22°C) modified the expression of some genes related to protein and energy metabolism in the Pectoralis major muscle of chickens. The lower activation of the ribosomal protein S6 by anabolic factors at 32°C could indicate a decrease in the efficiency of mRNA translation into proteins in hot environment. These findings, associated with an impaired potential of protein synthesis, suggest a long-term alteration of muscle protein synthesis under heat conditions. Sequential distribution of diets varying in protein and/or energy contents induced drastic regulations of genes and proteins involved in the control of proteolysis (e.g. atrogin-1) and protein synthesis (e.g. mTOR, S6K1, S6) in the Pectoralis major muscle of chickens. This may indicate a short-term regulation of protein synthesis/proteolysis balance, whose mechanisms and limits remain to be characterized

    Adaptations environnementales de la protéosynthèse et de la protéolyse dans le muscle de poulet (voies de signalisation impliquées)

    No full text
    Les mécanismes d adaptation environnementale du métabolisme protéique à court et long-terme sont mal connus. L exposition prolongée à la chaleur (32C vs. 22C) modifie l'expression de quelques gènes impliqués dans le métabolisme protéino-énergétique du muscle Pectoralis major de poulet. La moindre activation de la protéine ribosomale S6 par des facteurs anaboliques à 32C pourrait indiquer une baisse de l efficacité de la traduction des ARNm en protéines au chaud. Ceci, associé à une baisse du potentiel de synthèse, traduit une altération à long-terme de la protéosynthèse musculaire au chaud. La distribution séquentielle de régimes alimentaires variant par leur teneur en protéines et/ou en énergie induit au niveau du muscle Pectoralis major de poulet des régulations considérables d acteurs impliqués dans le contrôle de la protéolyse (e.g. atrogin-1) et de la protéosynthèse (e.g. mTOR, S6K1, S6). Ceci indique une régulation à court-terme de l équilibre protéosynthèse/protéolyse, dont les mécanismes et les limites restent à caractériser.Molecular mechanisms underlying the short and long-term environmental adaptation of protein metabolism are not well understood. Prolonged heat exposure (32C vs. 22C) modified the expression of some genes related to protein and energy metabolism in the Pectoralis major muscle of chickens. The lower activation of the ribosomal protein S6 by anabolic factors at 32C could indicate a decrease in the efficiency of mRNA translation into proteins in hot environment. These findings, associated with an impaired potential of protein synthesis, suggest a long-term alteration of muscle protein synthesis under heat conditions. Sequential distribution of diets varying in protein and/or energy contents induced drastic regulations of genes and proteins involved in the control of proteolysis (e.g. atrogin-1) and protein synthesis (e.g. mTOR, S6K1, S6) in the Pectoralis major muscle of chickens. This may indicate a short-term regulation of protein synthesis/proteolysis balance, whose mechanisms and limits remain to be characterized.TOURS-Bibl.électronique (372610011) / SudocSudocFranceF

    Effects of heat exposure on Akt/S6K1 signaling and expression of genes related to protein and energy metabolism in chicken (Gallus gallus) pectoralis major muscle.

    Full text link
    In order to improve understanding of the heat-induced changes in muscle growth, we determined the expression of genes related to protein and energy metabolism in the pectoralis major muscle of chickens. We also explored the protein kinase B (PKB also called Akt)/p70 S6 kinase (S6K1)/S6 pathway that mediates anabolic signals thereby regulating metabolism and hypertrophic/atrophic balance. Four-week-old chickens were exposed to 32 or 22 degrees C for 1 week. Chickens from both groups were then fasted for 16 h or left fed, and submitted to an oral administration of glucose-arginine to induce an anabolic response (30-min treatment) or left untreated. High ambient temperature and the associated decrease in feed intake modified the expression of certain energy-related genes (e.g. -40% for PGC-1alpha) and protein metabolism (e.g. about +80% for atrogin-1), but the expression of several muscle metabolism-related genes considered here was unchanged. The capacity for muscle protein synthesis, i.e. RNA/protein ratio, was reduced in warm conditions (approximately -20%). Slightly lower activation of S6 induced by glucose-arginine treatment was found at 32 degrees C compared to 22 degrees C, which might indicate somewhat lower efficiency of mRNA translation. Analysis of glucose/insulin balance suggested changes in glucose metabolism under heat exposure. However, this remains to be characterized

    Manipulating tissue metabolism by amino acids

    Full text link
    Protein metabolism is considered to be regulated by amino acids, with major consequences on tissue development. There is evidence that lysine greatly affects carcass composition and muscle growth. In particular, a drastic effect of dietary provision of lysine has been observed on breast muscle development in chickens. Other essential amino acids, such as threonine and valine, do not have as pronounced an effect as lysine on body composition. Increasing lysine can also improve chicken breast muscle quality by increasing its ultimate pH and water holding capacity, but the underlying mechanisms are still unknown. Studies conducted over the last ten years indicate that, in addition to being substrates for protein synthesis, amino acids act as modulators of signal transduction pathways that control metabolism and cell functions. For instance, certain amino acids can modulate the activity of the intracellular protein kinases involved in the control of mRNA translation. Interestingly, enhanced responses to amino acids have been reported during the neonatal period, suggesting that early protein nutrition impacts on the development of broiler chicks. Methionine and cysteine have a very significant place among amino acids because they have several additional roles: they are precursors of essential molecules, for example cysteine is used for the synthesis of the antioxidant glutathione, and thus participates in the control of oxidative status, methionine is a source of the methyl groups needed for all biological methylation reactions, including methylation of DNA and histones, etc. These findings together indicate the importance of optimizing amino acid nutrition and providing a rationale for nutritional advice. © Copyright World's Poultry Science Association 2011
    corecore