310 research outputs found

    Experimental and Numerical Investigation of a Lattice Structure for Energy Absorption: Application to the Design of an Automotive Crash Absorber

    Get PDF
    In this work, an experimental and numerical analysis of a lattice structure for energy absorption was carried out. The goal was to identify the most influencing parameters of the unit cell on the crushing performances of the structure, thus guiding the design of energy absorbers. Two full factorial plans of compression tests on cubic specimens of carbon nylon produced by fused deposition modeling (FDM) were performed. The factors were the beam diameter and the number of unit cells. In the first factorial plan, the specimen volume is constant and the dimensions of the unit cell are varied, while the second factorial plan assumes a constant size of the unit cell and the volume changes in accordance with their number. The results showed that the specific energy absorption increases with the diameter of the beam and decreases with the size of the unit cell. Based on these results, a crash absorber for the segment C vehicle was designed and compared with the standard component of the vehicle made of steel. In addition to a mass reduction of 25%, the improved crushing performances of the lattice structure are shown by the very smooth force-displacement curve with limited peaks and valleys

    Single-lap joints of similar and dissimilar adherends bonded with a polyurethane adhesive used in the automotive industry

    Get PDF
    The mechanical performances of single-lap joints between similar and dissimilar adherends bonded with a bi-component polyurethane adhesive have been studied in the present work. The substrate materials include both carbon fibre reinforced composite material (CRFP) and painted metal substrates (PMS). The following substrate combinations were tested: CFRP/CFRP, PMS/PMS, and CFRP/PMS. Two adhesive overlaps, 12 mm and 24 mm, with a fixed thickness were studied to assess the mechanical behaviour of the adhesive joints. The experimental results have been used to construct a finite element model of the single lap joint tests. The objective is to determine the material cohesive properties, in particular the maximum shear stress and the corresponding energy release rate, of the adhesive layer for each retained combination of substrates. An optimization scheme based on transient nonlinear finite element analysis has been here considered, where cohesive parameters of the adhesive layer are handled as design variables. Material parameters are firstly identified for the 12 mm overlap, minimizing the discrepancy between the experimental and numerical force-displacement curves. Then, to validate the obtained properties, results of the 24 mm overlap single lap joint tests are used. The comparison between the experimental and numerical results shows a very good agreemen

    Additive effects of Na+ and Cl– ions on barley growth under salinity stress

    Get PDF
    Soil salinity affects large areas of the world’s cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na+) and chloride (Cl–) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na+ accumulation. It has previously been suggested that Cl– toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na+ and Cl– reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na+, Cl–, and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na+ and Cl– stress. The results demonstrated that Na+ and Cl– exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na+ reduced K+ and Ca2+ uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl– concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown

    Cytochalasin D restores nuclear size acting on F-actin and IZUMO1 localization in low-quality spermatozoa

    Get PDF
    In spermatozoa, the nuclear F-actin supports the acroplaxome, a subacrosomal structure involved in the correct exposure of several acrosomal membrane proteins; among them, the glycoprotein IZUMO1 is the major protein involved in sperm-oocyte fusion. Nuclear F-actin is also involved in sperm head shaping and chromosome compartmentalization. To date, few notions regarding the bivalent role of F-actin on sperm chromatin organization and IZUMO1 positioning have been reported. In our work, we characterized subcellular organization of F-actin in human high- and low-quality spermatozoa (A- and B-SPZ), respectively, showing that F-actin over-expression in sperm head of B-SPZ affected IZUMO1 localization. A correct IZUMO1 repositioning following in vitro induction of F-actin depolymerization, by cytochalasin D treatment, occurred. Interestingly, F-actin depolymerization was also associated with a correct acrosome repositioning, thus to favor a proper acrosome reaction onset, with changes in sperm nuclear size parameters and histone acetylation rate reaching high-quality conditions. In conclusion, the current work shows a key role of F-actin in the control of IZUMO1 localization as well as chromatin remodeling and acetylation events

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Superconductivity in Ce- and U-based "122" heavy-fermion compounds

    Full text link
    This review discusses the heavy-fermion superconductivity in Ce- and U-based compounds crystallizing in the body-centered tetragonal ThCr2Si2 structure. Special attention will be paid to the theoretical background of these systems which are located close to a magnetic instability.Comment: 12 pages, 9 figures. Invited topical review (special issue on "Recent Developments in Superconductivity") Metadata and references update

    Development and Validation of Hepamet Fibrosis Scoring System-a Simple, Non-invasive Test to Identify Patients With Nonalcoholic Fatty liver Disease With Advanced Fibrosis

    Get PDF
    BACKGROUND & AIMS: Fibrosis affects prognoses for patients with nonalcoholic fatty liver disease (NAFLD). Several non-invasive scoring systems have aimed to identify patients at risk for advanced fibrosis, but inconclusive results and variations in features of patients (diabetes, obesity and older age) reduce their diagnostic accuracy. We sought to develop a scoring system based on serum markers to identify patients with NAFLD at risk for advanced fibrosis. METHODS: We collected data from 2452 patients with NAFLD at medical centers in Italy, France, Cuba, and China. We developed the Hepamet fibrosis scoring system using demographic, anthropometric, and laboratory test data, collected at time of liver biopsy, from a training cohort of patients from Spain (n=768) and validated the system using patients from Cuba (n=344), Italy (n=288), France (n=830), and China (n=232). Hepamet fibrosis score (HFS) were compared with those of previously developed fibrosis scoring systems (the NAFLD fibrosis score [NFS] and FIB-4). The diagnostic accuracy of the Hepamet fibrosis scoring system was assessed based on area under the receiver operating characteristic (AUROC) curve, sensitivity, specificity, diagnostic odds ratio, and positive and negative predictive values and likelihood ratios. RESULTS: Variables used to determine HFS were patient sex, age, homeostatic model assessment score, presence of diabetes, levels of aspartate aminotransferase, and albumin, and platelet counts; these were independently associated with advanced fibrosis. HFS discriminated between patients with and without advanced fibrosis with an AUROC curve value of 0.85 whereas NFS or FIB-4 did so with AUROC values of 0.80 (P=.0001). In the validation set, cut-off HFS of 0.12 and 0.47 identified patients with and without advanced fibrosis with 97.2% specificity, 74% sensitivity, a 92% negative predictive value, a 76.3% positive predictive value, a 13.22 positive likelihood ratio, and a 0.31 negative likelihood ratio. HFS were not affected by patient age, body mass index, hypertransaminasemia, or diabetes. The Hepamet fibrosis scoring system had the greatest net benefit in identifying patients who should undergo liver biopsy analysis and led to significant improvements in reclassification, reducing the number of patients with undetermined results to 20% from 30% for the FIB-4 and NFS systems (P<.05). CONCLUSIONS: Using clinical and laboratory data from patients with NAFLD, we developed and validated the Hepamet fibrosis scoring system, which identified patients with advanced fibrosis with greater accuracy than the FIB-4 and NFS systems. the Hepamet system provides a greater net benefit for the decision-making process to identify patients who should undergo liver biopsy analysis

    MRI measurement of liver fat content predicts the metabolic syndrome

    Get PDF
    BACKGROUND AND AIMS: The prevalence of non-alcoholic fatty liver disease among cardiometabolic patients is not completely known because liver biopsy cannot be routinely performed. However, as magnetic resonance imaging (MRI) allows accurate and safe measurement of the hepatic fat fraction (HFF), the aim of this study was to quantify liver fat content in a dysmetabolic adult population. METHODS: A total of 156 adults were included in this cross-sectional study. Liver and visceral fat were assessed by MRI in these subjects, who presented with zero to five metabolic components of the metabolic syndrome (MetS). Arterial stiffness was recorded by ultrasonography, and the maximum Youden index was used to set the optimal HFF cutoff value predictive of the presence of the MetS. RESULTS: Overall, 72% of participants displayed three or more MetS components. HFF ranged from 0.3% to 52% (mean 13.4%). Age- and gender-adjusted HFF was positively correlated with BMI (r=0.44), blood pressure (r=0.19), triglyceridaemia (r=0.22) and glycaemia (r=0.31). MRI-measured visceral adipose tissue did not influence the relationship of steatosis with glycaemia, HOMA-IR and carotid stiffness, but there was a dose-response relationship between the number of MetS components and mean HFF. The optimal HFF for predicting the MetS was found to be 5.2% according to the maximum Youden index point. CONCLUSION: This study highlighted the impact of liver steatosis on cardiometabolic abnormalities with an optimal cutoff value of 5.2% for defining increased metabolic risk

    A stepwise algorithm using an at-a-glance first-line test for the non-invasive diagnosis of advanced liver fibrosis and cirrhosis

    Get PDF
    BACKGROUND & AIMS: Chronic liver diseases (CLD) are common, and are therefore mainly managed by non-hepatologists. These physicians lack access to the best non-invasive tests of liver fibrosis, and consequently cannot accurately determine the disease severity. Referral to a hepatologist is then needed. We aimed to implement an algorithm, comprising a new first-line test usable by all physicians, for the detection of advanced liver fibrosis in all CLD patients. METHODS: Diagnostic study: 3754 CLD patients with liver biopsy were 2:1 randomized into derivation and validation sets. Prognostic study: longitudinal follow-up of 1275 CLD patients with baseline fibrosis tests. RESULTS: Diagnostic study: the easy liver fibrosis test (eLIFT), an "at-a-glance" sum of points attributed to age, gender, gamma-glutamyl transferase, aspartate aminotransferase (AST), platelets and prothrombin time, was developed for the diagnosis of advanced fibrosis. In the validation set, eLIFT and fibrosis-4 (FIB4) had the same sensitivity (78.0% vs. 76.6%, p=0.470) but eLIFT gave fewer false positive results, especially in patients ≥60years old (53.8% vs. 82.0%, p<0.001), and was thus more suitable as screening test. FibroMeter with vibration controlled transient elastography (VCTE) was the most accurate among the eight fibrosis tests evaluated. The sensitivity of the eLIFT-FM algorithm (first-line eLIFT, second-line FibroMeter) was 76.1% for advanced fibrosis and 92.1% for cirrhosis. Prognostic study: patients diagnosed as having "no/mild fibrosis" by the algorithm had excellent liver-related prognosis with thus no need for referral to a hepatologist. CONCLUSION: The eLIFT-FM algorithm extends the detection of advanced liver fibrosis to all CLD patients and reduces unnecessary referrals of patients without significant CLD to hepatologists. LAY SUMMARY: Blood fibrosis tests and transient elastography accurately diagnose advanced liver fibrosis in the large population of patients having chronic liver disease, but these non-invasive tests are only currently available in specialized centers. We have developed an algorithm including the easy liver fibrosis test (eLIFT), a new simple and widely available blood test. It is used as a first-line procedure that selects at-risk patients who need further evaluation with the FibroMeter, an accurate fibrosis test combining blood markers and transient elastography result. This new algorithm, called the eLIFT-FM, accurately identifies the patients with advanced chronic liver disease who need referral to a specialist, and those with no or mild liver lesions who can remain under the care of their usual physician. CLINICAL TRIAL REGISTRATION: No registration (analysis of pooled data from previously published diagnostic studies)
    corecore