129 research outputs found

    Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in The ISME Journal 11 (2017): 186–200, doi:10.1038/ismej.2016.95.Reef-building corals are well regarded not only for their obligate association with endosymbiotic algae, but also with prokaryotic symbionts, the specificity of which remains elusive. To identify the central microbial symbionts of corals, their specificity across species and conservation over geographic regions, we sequenced partial SSU ribosomal RNA genes of Bacteria and Archaea from the common corals Stylophora pistillata and Pocillopora verrucosa across 28 reefs within seven major geographical regions. We demonstrate that both corals harbor Endozoicomonas bacteria as their prevalent symbiont. Importantly, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH) with Endozoicomonas-specific probes confirmed their residence as large aggregations deep within coral tissues. Using fine-scale genotyping techniques and single-cell genomics, we demonstrate that P. verrucosa harbors the same Endozoicomonas, whereas S. pistillata associates with geographically distinct genotypes. This specificity may be shaped by the different reproductive strategies of the hosts, potentially uncovering a pattern of symbiont selection that is linked to life history. Spawning corals such as P. verrucosa acquire prokaryotes from the environment. In contrast, brooding corals such as S. pistillata release symbiont-packed planula larvae, which may explain a strong regional signature in their microbiome. Our work contributes to the factors underlying microbiome specificity and adds detail to coral holobiont functioning.This research was supported by a KAUST-WHOI Post-doctoral Partnership Award to MN and a KAUST-WHOI Special Academic Partnership Funding Reserve Award to CRV and AA. Research in this study was further supported by baseline research funds to CRV by KAUST and NSF award OCE-1233612 to AA. RR was supported by the ct-PIRE Project, Robert Lemelson Fellowship, Graduate Research Award (UCLA), Women Divers Hall of Fame—Sister Fund Conservation Award and a Betty and E. P. Franklin Grant in Tropical Biology and Conservation

    Extending the natural adaptive capacity of coral holobionts

    Get PDF
    Anthropogenic climate change and environmental degradation destroy coral reefs, the ecosystem services they provide, and the livelihoods of close to a billion people who depend on these services. Restoration approaches to increase the resilience of corals are therefore necessary to counter environmental pressures relevant to climate change projections. In this Review, we examine the natural processes that can increase the adaptive capacity of coral holobionts, with the aim of preserving ecosystem functioning under future ocean conditions. Current approaches that centre around restoring reef cover can be integrated with emerging approaches to enhance coral stress resilience and, thereby, allow reefs to regrow under a new set of environmental conditions. Emerging approaches such as standardized acute thermal stress assays, selective sexual propagation, coral probiotics, and environmental hardening could be feasible and scalable in the real world. However, they must follow decision-making criteria that consider the different reef, environmental, and ecological conditions. The implementation of adaptive interventions tailored around nature-based solutions will require standardized frameworks, appropriate ecological risk–benefit assessments, and analytical routines for consistent and effective utilization and global coordination

    Consensus Guidelines for Advancing Coral Holobiont Genome and Specimen Voucher Deposition

    Get PDF
    Coral research is being ushered into the genomic era. To fully capitalize on the potential discoveries from this genomic revolution, the rapidly increasing number of high-quality genomes requires effective pairing with rigorous taxonomic characterizations of specimens and the contextualization of their ecological relevance. However, to date there is no formal framework that genomicists, taxonomists, and coral scientists can collectively use to systematically acquire and link these data. Spurred by the recently announced “Coral symbiosis sensitivity to environmental change hub” under the “Aquatic Symbiosis Genomics Project” - a collaboration between the Wellcome Sanger Institute and the Gordon and Betty Moore Foundation to generate gold-standard genome sequences for coral animal hosts and their associated Symbiodiniaceae microalgae (among the sequencing of many other symbiotic aquatic species) - we outline consensus guidelines to reconcile different types of data. The metaorganism nature of the coral holobiont provides a particular challenge in this context and is a key factor to consider for developing a framework to consolidate genomic, taxonomic, and ecological (meta)data. Ideally, genomic data should be accompanied by taxonomic references, i.e., skeletal vouchers as formal morphological references for corals and strain specimens in the case of microalgal and bacterial symbionts (cultured isolates). However, exhaustive taxonomic characterization of all coral holobiont member species is currently not feasible simply because we do not have a comprehensive understanding of all the organisms that constitute the coral holobiont. Nevertheless, guidelines on minimal, recommended, and ideal-case descriptions for the major coral holobiont constituents (coral animal, Symbiodiniaceae microalgae, and prokaryotes) will undoubtedly help in future referencing and will facilitate comparative studies. We hope that the guidelines outlined here, which we will adhere to as part of the Aquatic Symbiosis Genomics Project sub-hub focused on coral symbioses, will be useful to a broader community and their implementation will facilitate cross- and meta-data comparisons and analyses.CV acknowledges funding from the German Research Foundation (DFG), grants 433042944 and 458901010. Open Access publication fees are covered by an institutional agreement of the University of Konstanz

    Insights into the cultured bacterial fraction of corals

    Get PDF
    Bacteria associated with coral hosts are diverse and abundant, with recent studies suggesting involvement of these symbionts in host resilience to anthropogenic stress. Despite their putative importance, the work dedicated to culturing coral-associated bacteria has received little attention. Combining published and unpublished data, here we report a comprehensive overview of the diversity and function of culturable bacteria isolated from corals originating from tropical, temperate, and cold-water habitats. A total of 3,055 isolates from 52 studies were considered by our metasurvey. Of these, 1,045 had full-length 16S rRNA gene sequences, spanning 138 formally described and 12 putatively novel bacterial genera across the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. We performed comparative genomic analysis using the available genomes of 74 strains and identified potential signatures of beneficial bacterium-coral symbioses among the strains. Our analysis revealed \u3e 400 biosynthetic gene clusters that underlie the biosynthesis of antioxidant, antimicrobial, cytotoxic, and other secondary metabolites. Moreover, we uncovered genomic features-not previously described for coral-bacterium symbioses-potentially involved in host colonization and host-symbiont recognition, antiviral defense mechanisms, and/or integrated metabolic interactions, which we suggest as novel targets for the screening of coral probiotics. Our results highlight the importance of bacterial cultures to elucidate coral holobiont functioning and guide the selection of probiotic candidates to promote coral resilience and improve holistic and customized reef restoration and rehabilitation efforts

    Single-Step Selection of Bivalent Aptamers Validated by Comparison with SELEX Using High-Throughput Sequencing

    Get PDF
    The identification of nucleic acid aptamers would be advanced if they could be obtained after fewer rounds of selection and amplification. In this paper the identification of bivalent aptamers for thrombin by SELEX and single-step selection are compared using next generation sequencing and motif finding informatics. Results show that similar aptamers are identified by both methods. This is significant because it shows that next generation sequencing and motif finding informatics have the potential to simplify the selection of aptamers by avoiding multiple rounds of enzymatic transcription and amplification

    Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions?

    Get PDF
    A major challenge in ecology is forecasting the effects of species' extinctions, a pressing problem given current human impacts on the planet. Consequences of species losses such as secondary extinctions are difficult to forecast because species are not isolated, but interact instead in a complex network of ecological relationships. Because of their mutual dependence, the loss of a single species can cascade in multiple coextinctions. Here we show that an algorithm adapted from the one Google uses to rank web-pages can order species according to their importance for coextinctions, providing the sequence of losses that results in the fastest collapse of the network. Moreover, we use the algorithm to bridge the gap between qualitative (who eats whom) and quantitative (at what rate) descriptions of food webs. We show that our simple algorithm finds the best possible solution for the problem of assigning importance from the perspective of secondary extinctions in all analyzed networks. Our approach relies on network structure, but applies regardless of the specific dynamical model of species' interactions, because it identifies the subset of coextinctions common to all possible models, those that will happen with certainty given the complete loss of prey of a given predator. Results show that previous measures of importance based on the concept of “hubs” or number of connections, as well as centrality measures, do not identify the most effective extinction sequence. The proposed algorithm provides a basis for further developments in the analysis of extinction risk in ecosystems

    Typical investigational medicinal products follow relatively uniform regulations in 10 European Clinical Research Infrastructures Network (ECRIN) countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to facilitate multinational clinical research, regulatory requirements need to become international and harmonised. The EU introduced the Directive 2001/20/EC in 2004, regulating investigational medicinal products in Europe.</p> <p>Methods</p> <p>We conducted a survey in order to identify the national regulatory requirements for major categories of clinical research in ten European Clinical Research Infrastructures Network (ECRIN) countries-Austria, Denmark, France, Germany, Hungary, Ireland, Italy, Spain, Sweden, and United Kingdom-covering approximately 70% of the EU population. Here we describe the results for regulatory requirements for typical investigational medicinal products, in the ten countries.</p> <p>Results</p> <p>Our results show that the ten countries have fairly harmonised definitions of typical investigational medicinal products. Clinical trials assessing typical investigational medicinal products require authorisation from a national competent authority in each of the countries surveyed. The opinion of the competent authorities is communicated to the trial sponsor within the same timelines, i.e., no more than 60 days, in all ten countries. The authority to which the application has to be sent to in the different countries is not fully harmonised.</p> <p>Conclusion</p> <p>The Directive 2001/20/EC defined the term 'investigational medicinal product' and all regulatory requirements described therein are applicable to investigational medicinal products. Our survey showed, however, that those requirements had been adopted in ten European countries, not for investigational medicinal products overall, but rather a narrower category which we term 'typical' investigational medicinal products. The result is partial EU harmonisation of requirements and a relatively navigable landscape for the sponsor regarding typical investigational medicinal products.</p

    Culling-Induced Changes in Badger (Meles meles) Behaviour, Social Organisation and the Epidemiology of Bovine Tuberculosis

    Get PDF
    In the UK, attempts since the 1970s to control the incidence of bovine tuberculosis (bTB) in cattle by culling a wildlife host, the European badger (Meles meles), have produced equivocal results. Culling-induced social perturbation of badger populations may lead to unexpected outcomes. We test predictions from the ‘perturbation hypothesis’, determining the impact of culling operations on badger populations, movement of surviving individuals and the influence on the epidemiology of bTB in badgers using data dervied from two study areas within the UK Government's Randomised Badger Culling Trial (RBCT). Culling operations did not remove all individuals from setts, with between 34–43% of badgers removed from targeted social groups. After culling, bTB prevalence increased in badger social groups neighbouring removals, particularly amongst cubs. Seventy individual adult badgers were fitted with radio-collars, yielding 8,311 locational fixes from both sites between November 2001 and December 2003. Home range areas of animals surviving within removed groups increased by 43.5% in response to culling. Overlap between summer ranges of individuals from Neighbouring social groups in the treatment population increased by 73.3% in response to culling. The movement rate of individuals between social groups was low, but increased after culling, in Removed and Neighbouring social groups. Increased bTB prevalence in Neighbouring groups was associated with badger movements both into and out of these groups, although none of the moving individuals themselves tested positive for bTB. Significant increases in both the frequency of individual badger movements between groups and the emergence of bTB were observed in response to culling. However, no direct evidence was found to link the two phenomena. We hypothesise that the social disruption caused by culling may not only increase direct contact and thus disease transmission between surviving badgers, but may also increase social stress within the surviving population, causing immunosuppression and enhancing the expression of disease

    The Pochonia chlamydosporia Serine Protease Gene vcp1 Is Subject to Regulation by Carbon, Nitrogen and pH: Implications for Nematode Biocontrol

    Get PDF
    The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers) may enhance biocontrol potential in some circumstances
    corecore