38 research outputs found

    Carbon nanostructures derived through hypergolic reaction of conductive polymers with fuming nitric acid at ambient conditions

    Get PDF
    Hypergolic systems rely on organic fuel and a powerful oxidizer that spontaneously ignites upon contact without any external ignition source. Although their main utilization pertains to rocket fuels and propellants, it is only recently that hypergolics has been established from our group as a new general method for the synthesis of different morphologies of carbon nanostructures depending on the hypergolic pair (organic fuel-oxidizer). In search of new pairs, the hypergolic mixture described here contains polyaniline as the organic source of carbon and fuming nitric acid as strong oxidizer. Specifically, the two reagents react rapidly and spontaneously upon contact at ambient conditions to afford carbon nanosheets. Further liquid-phase exfoliation of the nanosheets in dimethylformamide results in dispersed single layers exhibiting strong Tyndall effect. The method can be extended to other conductive polymers, such as polythiophene and polypyrrole, leading to the formation of different type carbon nanostructures (e.g., photolumincent carbon dots). Apart from being a new synthesis pathway towards carbon nanomaterials and a new type of reaction for conductive polymers, the present hypergolic pairs also provide a novel set of rocket bipropellants based on conductive polymers.Web of Science266art. no. 159

    Microwave synthesis, characterization and perspectives of wood pencil-derived carbon

    Get PDF
    More than 14 billion pencils are manufactured and used globally every year. On average, a pencil is discarded after 60% of its original length has been depleted. In the present work we propose a simple and affordable way of converting this non-neglectable amount of waste into added value carbon product. In particular, we demonstrate the microwave synthesis of carbon from the wood pencil with and without chemical activation. This could be a process stage before the final recycling of the expensive graphite core. In the latter case, irradiation of the wood pencil in a domestic microwave oven heats up the pencil's graphite core, thus inducing carbonization of its wood casing. The carbonized product consists of amorphous carbon nanosheets having relatively low surface area. However, if the wood pencil is soaked in 50% KOH aqueous solution prior to microwave irradiation, a significantly higher surface area of carbon is obtained, consisting of irregular-shaped porous particles. Consequently, the obtained carbon can easily decolorize a methylene blue aqueous solution, can be used to make pocket warmers or gunpowder, and lastly, serves as an excellent adsorbent towards Cr(VI) removal from water, showing a maximum adsorption capacity of 70-75 mg/g within 24 h at 23 degrees C, pH = 3.Web of Science121art. no. 41

    Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications

    Get PDF
    This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of pi-pi interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted, to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graphene and graphene oxideope

    Synthesis of 2D Germanane (GeH):a New, Fast, and Facile Approach

    Get PDF
    Germanane (GeH), a germanium analogue of graphane, has recently attracted considerable interest because its remarkable combination of properties makes it an extremely suitable candidate to be used as 2D material for field effect devices, photovoltaics, and photocatalysis. Up to now, the synthesis of GeH has been conducted by substituting Ca by H in a beta-CaGe2 layered Zintl phase through topochemical deintercalation in aqueous HCl. This reaction is generally slow and takes place over 6 to 14 days. The new and facile protocol presented here allows to synthesize GeH at room temperature in a significantly shorter time (a few minutes), which renders this method highly attractive for technological applications. The GeH produced with this method is highly pure and has a band gap (E-g) close to 1.4 eV, a lower value than that reported for germanane synthesized using HCl, which is promising for incorporation of GeH in solar cells

    Graphene nanobeacons with high-affinity pockets for combined, selective, and effective decontamination and reagentless detection of heavy metals

    Get PDF
    Access to clean water for drinking, sanitation, and irrigation is a major sustainable development goal of the United Nations. Thus, technologies for cleaning water and quality-monitoring must become widely accessible and of low-cost, while being effective, selective, sustainable, and eco-friendly. To meet this challenge, hetero-bifunctional nanographene fluorescent beacons with high-affinity pockets for heavy metals are developed, offering top-rated and selective adsorption for cadmium and lead, reaching 870 and 450 mg g(-1), respectively. The heterobifunctional and multidentate pockets also operate as selective gates for fluorescence signal regulation with sub-nanomolar sensitivity (0.1 and 0.2 nm for Pb2+ and Cd2+, respectively), due to binding affinities as low as those of antigen-antibody interactions. Importantly, the acid-proof nanographenes can be fully regenerated and reused. Their broad visible-light absorption offers an additional mode for water-quality monitoring based on ultra-low cost and user-friendly reagentless paper detection with the naked-eye at a limit of detection of 1 and 10 ppb for Pb2+ and Cd2+ ions, respectively. This work shows that photoactive nanomaterials, densely-functionalized with strong, yet selective ligands for targeted contaminants, can successfully combine features such as excellent adsorption, reusability, and sensing capabilities, in a way to extend the material's applicability, its life-cycle, and value-for-money.Web of Science1833art. no. 220100

    Nové magnetické nanohybridy: od nanočástic oxidu železitého po nanočástice karbidu železa vypěstovaných na nanodiamantech

    No full text
    The synthesis and characterization of a new line of magnetic hybrid nanostructured materials composed of spinel-type iron oxide to iron carbide nanoparticles grown on nanodiamond nanotemplates is reported in this study. The realization of these nanohybrid structures is achieved through thermal processing under vacuum at different annealing temperatures of a chemical precursor, in which very fine maghemite (γ-Fe2O3) nanoparticles seeds were developed on the surface of the nanodiamond nanotemplates. It is seen that low annealing temperatures induce the growth of the maghemite nanoparticle seeds to fine dispersed spinel-type non-stoichiometric ~5 nm magnetite (Fe3−xO4) nanoparticles, while intermediate annealing temperatures lead to the formation of single phase ~10 nm cementite (Fe3C) iron carbide nanoparticles. Higher annealing temperatures produce a mixture of larger Fe3C and Fe5C2 iron carbides, triggering simultaneously the growth of large-sized carbon nanotubes partially filled with these carbides. The magnetic features of the synthesized hybrid nanomaterials reveal the properties of their bearing magnetic phases, which span from superparamagnetic to soft and hard ferromagnetic and reflect the intrinsic magnetic properties of the containing phases, as well as their size and interconnection, dictated by the morphology and nature of the nanodiamond nanotemplates. These nanohybrids are proposed as potential candidates for important technological applications in nano-biomedicine and catalysis, while their synthetic route could be further tuned for development of new magnetic nanohybrid materials.V této studii je uvedena syntéza a charakterizace nové řady magnetických hybridních nanostrukturovaných materiálů složených z nanočástic oxidu železa typu spinel na karbid železa pěstovaných na nanodiamantových nanotemplátech. Realizace těchto nanohybridních struktur je dosažena tepelným zpracováním ve vakuu při různých teplotách žíhání chemického prekurzoru, ve kterém byla na povrchu nanodiamantových nanotemplate vyvinuta velmi jemná semena nanočástic maghemitu (γ-Fe2O3). Je vidět, že nízké teploty žíhání indukují růst semen nanočástic maghemitu na jemné dispergované nestechiometrické ~ 5 nm magnetitové (Fe3-xO4) nanočástice spinelového typu, zatímco střední teploty žíhání vedou k tvorbě jednofázového ~ 10 nm cementitu (Fe3C) nanočástice karbidu železa. Vyšší teploty žíhání vytvářejí směs větších karbidů železa Fe3C a Fe5C2, což současně spouští růst velkých uhlíkových nanotrubiček částečně naplněných těmito karbidy. Magnetické vlastnosti syntetizovaných hybridních nanomateriálů odhalují vlastnosti jejich nosných magnetických fází, které sahají od superparamagnetických po měkké a tvrdé feromagnetické a odrážejí vnitřní magnetické vlastnosti obsahujících fází, jakož i jejich velikost a vzájemné propojení diktované morfologií a povaha nanodiamantových nanotemplate. Tyto nanohybridy jsou navrženy jako potenciální kandidáti na důležité technologické aplikace v nano-biomedicíně a katalýze, zatímco jejich syntetická cesta by mohla být dále vyladěna pro vývoj nových magnetických nanohybridních materiálů

    Hypergolic Synthesis of Inorganic Materials by the Reaction of Metallocene Dichlorides with Fuming Nitric Acid at Ambient Conditions: The Case of Photocatalytic Titania

    No full text
    Hypergolic materials synthesis is a new preparative technique in materials science that allows a wide range of carbon or inorganic solids with useful properties to be obtained. Previously we have demonstrated that metallocenes are versatile reagents in the hypergolic synthesis of inorganic materials, such as γ-Fe2O3, Cr2O3, Co, Ni and alloy CoNi. Here, we go one step further by using metallocene dichlorides as precursors for the hypergolic synthesis of additional inorganic phases, such as photocatalytic titania. Metallocene dichlorides are closely related to metallocenes, thus expanding the arsenal of organometallic compounds that can be used in hypergolic materials synthesis. In the present case, we show that hypergolic ignition of the titanocene dichloride–fuming nitric acid pair results in the fast and spontaneous formation of titania nanoparticles at ambient conditions in the form of anatase–rutile mixed phases. The obtained titania shows good photocatalytic activity towards Cr(VI) removal (100% within 9 h), with the latter being dramatically enhanced after calcination of the powder at 500 °C (100% within 3 h). Notably, this performance was found to be comparable to that of commercially available P25 TiO2 under identical conditions. The cases of zirconocene, hafnocene and molybdocene dichlorides are discussed in this work, which aims to show the wider applicability of metallocene dichlorides in the hypergolic synthesis of inorganic materials (ZrO2, HfO2, MoO2)

    Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions

    No full text
    Herein, we present an interesting route to carbon derived from ferrocene without pyrolysis. Specifically, the direct contact of the metallocene with liquid bromine at ambient conditions released rapidly and spontaneously carbon soot, the latter containing dense spheres, nanosheets, and hollow spheres. The derived carbon carried surface C-Br bonds that permitted postfunctionalization of the solid through nucleophilic substitution. For instance, treatment with diglycolamine led to covalent attachment of the amine onto the carbon surface, thus conferring aqueous dispersability to t he solid. The dispersed solid exhibited visible photoluminescence under UV irradiation as a result of surface passivation by the amine. Hence, the present method not only allowed a rapid and spontaneous carbon formation at ambient conditions, but also surface engineering of the particles to impart new properties (e.g., photoluminescence)

    Self-Targeting of Carbon Dots into the Cell Nucleus: Diverse Mechanisms of Toxicity in NIH/3T3 and L929 Cells

    No full text
    It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements. Real-time penetration of QCDs across the plasma cell membrane was recorded, concentration dependent uptake was determined and endocytic pathways were characterized. We found out that the QCDs concentration of 200 µg/mL is close to saturation and subsequently, NIH/3T3 had a different cell cycle profile, however, no significant changes in viability (not even in the case with QCDs in the nuclei) and DNA damage. In the case of L929, the presence of QCDs in the nucleus evoked a cellular death. Intranuclear environment of NIH/3T3 cells affected fluorescent properties of QCDs and evoked fluorescence blue shifts. Studying the intracellular interactions with CDs is essential for development of future applications such as DNA sensing, because CDs as DNA probes have not yet been developed
    corecore