53 research outputs found

    Investigation of the antifouling constituents from the brown alga <i>Sargassum muticum</i> (Yendo) Fensholt

    Get PDF
    One of the most promising alternatives to toxic heavy metal-based paints is offered by the development of antifouling coatings in which the active ingredients are compounds naturally occurring in marine organisms and operating as natural antisettlement agents. Sessile marine macroalgae are remarkably free from settlement by fouling organisms. They produce a wide variety of chemically active metabolites in their surroundings, potentially as an aid to protect themselves against other settling organisms. In this study, a dichloromethane extract from the brown seaweed Sargassum muticum was tested in situ and, after 2 months of immersion, showed less fouling organisms on paints in which the extract was included, compared to paints containing only copper after 2 months of immersion. No barnacles or mussels have been observed on the test rack. Identification by NMR and GC/MS of the effective compound revealed the abundance of palmitic acid, a commonly found fatty acid. Pure palmitic acid showed antibacterial activity at 44 A µg mL-1, and also inhibited the growth of the diatom Cylindrotheca closterium at low concentration (EC50 = 45.5 A µg mL-1), and the germination of Ulva lactuca spores at 3 A µg mL-1. No cytotoxicity was highlighted, which is promising in the aim of the development of an environmentally friendly antifouling paint

    Potentiality of Using Spreading Sargassum Species From Indonesia as an Interesting Source of Antibacterial and Radical Scavenging Compounds: a Preliminary Study

    Full text link
    As an archipelagic country with 95,181 km long coastline, Indonesia has great potential as the producer of seaweeds. The diverse phyla of marine macroalgae (red, brown and green seaweeds) are known to produce molecules which are attractive for diverse industries. Applications of algal products range from simple biomass production for food, feed and fuels to valuable products such as sugar polymers, cosmetics, pharmaceuticals, pigments, and food supplements. Seaweeds also have the potential to be used as a source of new bioactive for human, animal or plant health, as well as a source of new synthons and biocatalysts in sustainable chemistry (Bourgougnon and Stiger-Pouvreau, 2011). In this paper, among species of economic value we focus on brown seaweeds belonging to family Sargassaceae and genus Sargassum spreading along Indonesian coasts. Members of this genus are especially abundant in tropical and subtropical regions (Zemke-White and Ohno, 1999). The purpose of this study is to analyze the antibacterial and antioxidant activity of three species of Sargassum, i.e. S. echinocarpum, S. duplicatum and S. polycystum. Both polar and non-polar extracts have been prepared from those three species. In vitro antibacterial activities of extracts were evaluated against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. Results indicated all the three species tested showed an antibacterial activity. The most effective antibacterial activity against S. aerous was from S. echinocarpum with ethil asetat, inhibition zone 1.13 ± 0.25 mm; S. duplicatum with N-Hexane was most effective against E. coli, 1.20 ± 0.28 mm

    Pharmacological profiles of animal- and nonanimal-derived sulfated polysaccharides – comparison of unfractionated heparin, the semisynthetic glucan sulfate PS3, and the sulfated polysaccharide fraction isolated from Delesseria sanguinea

    Get PDF
    Sulfated polysaccharides (SP) such as heparin are known to exhibit a wide range of biological activities, e.g., anticoagulant, anti-inflammatory, and antimetastastic effects. However, since the anticoagulant activity of heparin is dominating, its therapeutic use for other medical indications is limited due to an associated risk of bleeding. Further disadvantages of heparin are its animal origin, the shortage of resources, and its complex and variable composition. However, SP without these limitations may represent a substance class with good prospects for applications other than anticoagulation. In this study, the in vitro pharmacological profiles of two nonanimal-derived SP were investigated in comparison with unfractionated heparin. One is the natural SP fraction from the red algae Delesseria sanguinea (D.s.-SP). The other one is the chemically defined PS3, a semisynthetic β-1,3-glucan sulfate with proven in vivo anti-inflammatory and antimetastatic activities. All three polysaccharides were examined in vitro for their inhibitory effects on the coagulation and complement system, polymorphonuclear neutrophil elastase, hyaluronidase, matrix metalloproteinase-1, heparanase, and p-selectin-mediated cell adhesion. Compared with heparin, the nonanimal-derived polysaccharides have a four times weaker anticoagulant activity, but mostly exhibit stronger (1.4–224 times) effects on test systems investigating targets of inflammation or metastasis. According to their different structures, PS3 and D.s.-SP differ in their pharmacological profile with PS3 being the strongest inhibitor of heparanase and cell adhesion and D.s.-SP being the strongest inhibitor of hyaluronidase and complement activation. Considering both pharmacological profile and pharmaceutical quality parameters, PS3 represents a candidate for further development as an anti-inflammatory or antimetastatic drug whereas D.s.-SP might have perspectives for cosmetic applications

    Conventional and sustainable bioprocesses for the extraction of antiherpetic oligo- and polysaccharides from the red seaweeds

    No full text

    Anti-HIV activity and mode of action, in vitro, of the sulfated polysaccharide from Schizymenia dubyi (Rhodophyta)

    No full text
    International audienceThe water-soluble sulfated polysaccharide obtained from the red seaweed Schizymenia dubyi (Gigartinales, Gymnophlaceae) inhibited in vitro the replication of the Human Immunodeficiency Virus (HIV) as measured by Reverse Transcriptase enzyme in cell free supernatant as well as HIV-induced syncitium formation at 5 mu g/ml. To determine their optimal effect, the sulfated polysaccharide had to be present 2 h before or 1 h during the initial virus adsorption period. The action involved inhibition of virus-host cell attachment or an early step of HIV infection

    In vitro research of anti-HSV-1 activity in different extracts from Pacific oysters Crassostrea gigas

    No full text
    Mortalities related to the detection of Ostreid Herpesvirus 1 (OsHV-1) have been previously reported in France among larvae and spat of the Pacific oyster Crassostrea gigas. Adult oysters appear less sensitive to herpesvirus infections, although OsHV-1 has been detected in adults without signs of disease or mortality. This suggests that the virus is able to persist in its host and that adult oysters may be able to control OsHV-1 infection. Little is known about antiviral substances in invertebrates. The present work concerns the research of antiviral substances in adult oyster C. gigas, where putative antiviral activities were monitored using 3 strategies: (1) in metabolites with variable polarity, (2) in peptidic extracts and (3) in crude haemolymph. In vitro antiviral assays were based on inhibition of Herpes simplex virus type 1 (HSV-1) replication in Vero cell monolayers. All extracts presented no cytotoxicity. Antiviral activity was detected in the fresh filtered haemolymph (EC50:425 mu g ml(-1)) and seasonal variation of the haemolymph antiviral activity was monitored
    corecore