480 research outputs found

    Commutation Relations for Unitary Operators

    Full text link
    Let UU be a unitary operator defined on some infinite-dimensional complex Hilbert space H{\cal H}. Under some suitable regularity assumptions, it is known that a local positive commutation relation between UU and an auxiliary self-adjoint operator AA defined on H{\cal H} allows to prove that the spectrum of UU has no singular continuous spectrum and a finite point spectrum, at least locally. We show that these conclusions still hold under weak regularity hypotheses and without any gap condition. As an application, we study the spectral properties of the Floquet operator associated to some perturbations of the quantum harmonic oscillator under resonant AC-Stark potential

    Commutation Relations for Unitary Operators III

    Full text link
    Let UU be a unitary operator defined on some infinite-dimensional complex Hilbert space H{\cal H}. Under some suitable regularity assumptions, it is known that a local positive commutation relation between UU and an auxiliary self-adjoint operator AA defined on H{\cal H} allows to prove that the spectrum of UU has no singular continuous spectrum and a finite point spectrum, at least locally. We prove that under stronger regularity hypotheses, the local regularity properties of the spectral measure of UU are improved, leading to a better control of the decay of the correlation functions. As shown in the applications, these results may be applied to the study of periodic time-dependent quantum systems, classical dynamical systems and spectral problems related to the theory of orthogonal polynomials on the unit circle

    Localization Properties of the Chalker-Coddington Model

    Full text link
    The Chalker Coddington quantum network percolation model is numerically pertinent to the understanding of the delocalization transition of the quantum Hall effect. We study the model restricted to a cylinder of perimeter 2M. We prove firstly that the Lyapunov exponents are simple and in particular that the localization length is finite; secondly that this implies spectral localization. Thirdly we prove a Thouless formula and compute the mean Lyapunov exponent which is independent of M.Comment: 29 pages, 1 figure. New section added in which simplicity of the Lyapunov spectrum and finiteness of the localization length are proven. To appear in Annales Henri Poincar

    Towards Deconstruction of the Type D (2,0) Theory

    Get PDF
    We propose a four-dimensional supersymmetric theory that deconstructs, in a particular limit, the six-dimensional (2,0)(2,0) theory of type DkD_k. This 4d theory is defined by a necklace quiver with alternating gauge nodes O(2k)\mathrm{O}(2k) and Sp(k)\mathrm{Sp}(k). We test this proposal by comparing the 6d half-BPS index to the Higgs branch Hilbert series of the 4d theory. In the process, we overcome several technical difficulties, such as Hilbert series calculations for non-complete intersections, and the choice of O\mathrm{O} versus SO\mathrm{SO} gauge groups. Consistently, the result matches the Coulomb branch formula for the mirror theory upon reduction to 3d

    Root asymptotics of spectral polynomials for the Lame operator

    Full text link
    The study of polynomial solutions to the classical Lam\'e equation in its algebraic form, or equivalently, of double-periodic solutions of its Weierstrass form has a long history. Such solutions appear at integer values of the spectral parameter and their respective eigenvalues serve as the ends of bands in the boundary value problem for the corresponding Schr\"odinger equation with finite gap potential given by the Weierstrass \wp-function on the real line. In this paper we establish several natural (and equivalent) formulas in terms of hypergeometric and elliptic type integrals for the density of the appropriately scaled asymptotic distribution of these eigenvalues when the integer-valued spectral parameter tends to infinity. We also show that this density satisfies a Heun differential equation with four singularities.Comment: final version, to appear in Commun. Math. Phys.; 13 pages, 3 figures, LaTeX2

    Linking the High-Resolution Architecture of Modern and Ancient Wave-Dominated Deltas : Processes, Products and Forcing Factors

    Get PDF
    Many thoughts and concepts used in this paper were initially developed as a result of work conducted with funding provided to the WAVE Consortium at the Australian School of Petroleum, University of Adelaide (RBA, BKV and JB). The consortium sponsors (Apache, BAPETCO, BHPBP, BG, BP, Chevron, ConocoPhillips, Nexen, OMV, Shell, Statoil, Todd Energy, and Woodside Energy) are thus thanked for making this work possible. We are indebted to journal reviewers Cornel Olariu and Howard Feldman, and to Associate Editor Janok Bhattacharya for numerous comments and suggestions that improved the clarity of the manuscript.Peer reviewedPostprin

    On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum

    Full text link
    We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha, with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate |V(t)_{m,n}|0, p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and \epsilon is small enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where \sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was discussed earlier in the literature by Howland
    corecore